基于停车需求的电动汽车移动储能多目标充放电协调控制
DOI:
作者:
作者单位:

上海电力大学

作者简介:

通讯作者:

基金项目:

上海绿色能源并网工程技术研究中心(13DZ2251900)


Multi-objective coordinated control of charging and discharging for mobile energy storage of electric vehicles based on parking demand
Author:
Affiliation:

Shanghai University of Electric Power

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    电动汽车在不同类别规划用地间的移动及停放具有一定规律,基于居民区、工业区、商业区不同的停车充放电需求建立了电动汽车移动储能模型。此外,为更好地体现电动汽车移动储能在负荷管理上的优势,综合考虑电网、车主、停车充放电场所这三方,以负荷标准差最小和经济利益最大为目标构建了电动汽车充放电的多目标优化模型。通过快速非支配排序遗传算法(NSGA-II)解得帕累托(Pareto)最优前沿面,采用模糊隶属度法求折中最优解。最后对包含三个居民区、一个工业区、一个商业区的电动汽车移动储能充放电案例进行仿真,验证了所提模型及策略的有效性。

    Abstract:

    The movement and parking of electric vehicles between different types of planned land have certain rules. Based on the different charging and discharging needs of residential areas, industrial areas, and commercial areas, a mobile energy storage model for electric vehicles has been established. In addition, in order to better reflect the advantages of mobile energy storage for electric vehicles in load management, comprehensively considering the power grid, vehicle owners, and charging and discharging places, a multi-objective optimization model is constructed with the goal of minimizing the load standard deviation and maximizing economic benefits. The Pareto optimal front surface is obtained through the fast non-dominated sorting genetic algorithm (NSGA-II), and the fuzzy membership method is used to find the compromise optimal solution. Finally, a simulation of the charging and discharging case of mobile energy storage for electric vehicles containing three residential areas, one industrial area and one commercial area is carried out to verify the effectiveness of the proposed model and strategy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-12-15
  • 最后修改日期:2021-01-29
  • 录用日期:2021-03-19
  • 在线发布日期: