引用格式:杜涵,汤赐,罗敏,等.基于NSGA-II的高频融冰电源参数优化设计[J].电力科学与技术学报,2024,39(5):36-45. Citation: DU Han, TANG Ci, LUO Min, et al. Optimized design of high frequency ice melting power supply parameters based on NSGA-II [J]. Journal of Electric Power Science and Technology,2024,39(5):36-45.

基于 NSGA-Ⅱ的高频融冰电源参数优化设计

杜 涵',汤 赐',罗 敏',王佳怡',王振中',邝栩仪',张译乐2

(1.长沙理工大学电气与信息工程学院,湖南长沙,410114;2.长沙理工大学城南学院,湖南长沙410014)

摘 要:输电线路覆冰事故在中国冬季时常发生,基于介质损耗与集肤效应的高频融冰方法在发热方面比传统交 直流融冰有着显著的优势。针对高频高压在线融冰时电源频率、电压设计问题,提出一种基于NSGA-II的高频在 线融冰电源参数的多目标优化设计方法。首先,基于均匀传输线理论,建立了高频激励下的覆冰导线的等效传输 线电路模型;其次,从工程实际出发,结合高频在线融冰的热平衡原理,推导得到高频在线融冰目标函数及约束条 件;再次,通过NSGA-II算法求解得到该多目标问题的Pareto最优解集,并根据优劣解距离法(technique for order preference by similarity to an ideal solution, TOPSIS)法选择融冰电源参数;最后,利用 COMSOL软件,基于有限元 方法进行仿真验证。仿真结果验证该文融冰模型的正确性及所选参数的有效性。

关键 词:高频在线融冰;介质损耗效应;多目标优化;有限元;均匀传输线

DOI:10.19781/j.issn.1673-9140.2024.05.004 中图分类号:TM726 文章编号:1673-9140(2024)05-0036-10

Optimized design of high frequency ice melting power supply parameters based on NSGA- II

DU Han¹, TANG Ci¹, LUO Min¹, WANG Jiayi¹, WANG Zhenzhong¹, KUANG Xuyi¹, Zhang Yile² (1.College of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha 410014, China; 2.Chengnan College, Changsha University of Science & Technology, Changsha 410014, China)

Abstract: Transmission line ice-covering accidents occur frequently in winter in China, and the high-frequency icemelting method based on dielectric loss and skin effect has significant advantages over traditional AC-DC ice-melting heat generation. Aiming at the design problems of frequency and voltage of ice melting power supply in high frequency and high voltage online ice melting, a NSGA- II based high-frequency ice melting power supply parameters design method considering line constraints is proposed. Firstly, based on the uniform transmission line theory, the equivalent transmission line circuit model of the ice-covered wire is established; secondly, from the engineering reality and combined with the principle of high frequency online ice melting heat balance, derive the high frequency ice melt objective function and constraints; the NSGA- II algorithm is then used to obtain the Pareto optimal solution set and to select the ice melt power parameters according to the TOPSIS method; finally, simulations using comsol based finite element methods were used to verify the correctness of the ice melt model and the validity of the parameters selected in this paper.

Key words: high frequency online ice melting; dielectric loss effect; multi-objective optimization; finite element; uniform transmission line

大部分输电线路需要穿过山地、洼地、高原等 气候复杂多变的区域。在冰雪、冻雨等极端的气象 条件下,输电线路覆冰成为不可避免的问题,严重的覆冰问题甚至可使得电网解列,导致电网的大面

收稿日期:2023-05-04;修回日期:2024-02-27

基金项目:国家自然科学基金资助项目(51977013);长沙理工大学研究生科研创新项目(CXCLY2022081,CX2121SS50) 通信作者:汤赐(1978—),男,博士,副教授,主要从事电力电子技术在电能质量等方面的研究;E-mail: tangci2679@126.com

250亿元[3]。

积瘫痪。因此,输电线路覆冰成了电力系统的一大隐患^[1-2]。在2008年,中国的华中、华东与华南等地区发生了大面积冰灾,500 kV输电线路停运119条, 220 kV输电线路停运343条,电力系统遭受了严重的破坏,国家电网和南方电网的直接经济损失达

因此,许多研究人员对覆冰线路的融冰技术展 开研究。目前,交流工频短路融冰和直流短路融冰 是应用较为广泛和成熟的融冰手段^[4-5]。交流工频 短路融冰的输电线路的电抗很大,使其要求巨大的 融冰电源容量,导致无功功率的浪费。一般该方法 仅适用于220 kV 电压等级以下的输电线路。直流 融冰电源造价昂贵,融冰成本巨大。且这两种方法 均需要较长的线路停运时间。因此,探寻新型的、 高效的在线融冰技术仍是电力系统当前的重要课 题之一^[6]。

高频融冰技术是基于介质损耗和趋肤效应在 中高频激励下显著增强而提出的一种融冰技术[7]。 高频陷波器对高频分量与工频分量的可区分性,使 得在线融冰成为了可能。高频融冰技术也被越来 越多的学者关注。文献[8]分别从融冰原理、临界 融冰电流与融冰时间等方面对高频融冰与交流短 路融冰进行了对比和分析,发现高频融冰法具有高 效、临界融冰电流较小与融冰时间短等优点。文献 [9]基于ANSYS软件,采用电磁热耦合方法分析了 高频激励下临界融冰电流及其影响因素。文献 [10-11]基于传输线理论,从功率均匀度、电源端功 率因素、电源电压这3个指标,研究了临界融冰功率 为50W/m时的最佳融冰电源频率与电压的选取。 文献[12]针对在冰层介质损耗较小时电源频率过 高的问题,提出了牺牲功率均匀度来降低电源频率 的方法。

综上所述,目前高频融冰电源参数设计在主要 满足电源电压取极小值和电源端功率因素的基础 上,寻找使得沿线热功率满足临界融冰功率最小的 融冰电压与频率。但这些设计也存在一些不足:在 考虑在线融冰时,电源频率会影响沿线电压和电 流,并可能叠加线路正常工作时的负荷分量,因此 设计必须考虑导线耐压与耐流约束;高频电源参数 设计的临界融冰功率均基于定值50 W/m,未考虑 环境影响,这样的设计存在局限性。故亟须对高频 在线融冰过程中所必须满足的约束条件进行研究。 高频融冰过程中既有需要优化的沿线热、电源频 率、电压等指标,也有必须满足的工程实际规定。 本文引入多目标优化算法,将高频融冰参数设计问题转化为带约束的多目标优化问题。

本文提出一种基于带精英策略的快速非支 配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)的高频在线融冰电源参数 多目标优化设计方法。首先,建立高频激励下的覆 冰导线数学模型,分析电源参数对高频融冰的影 响;其次,建立高频融冰电源参数设计的多目标优 化模型,重点从高频在线融冰热平衡原理出发,推 导得到临界融冰功率约束、线路允许最大载流量约 束等约束条件,并通过NSGA-II算法求解多目标优 化模型,得到Pareto最优解集,采用优劣解距离法 (technique for order preference by similarity to an ideal solution, TOPSIS)选出最优的一组目标函数 权重;最后,使用COMSOL软件进行仿真,验证该 融冰模型的正确性与所选参数的有效性。

1 高频高压在线融冰原理

高频高压在线融冰的系统架构如图1所示。在 图1中,V。是频率为f的交流激励电压源,调谐于f的 电感L。和电容C。构成串联谐振电路,用来控制高频 电压源的作用范围,即融冰线路的范围,防止高频 融冰分量逸散到融冰线路之外,不影响待融冰线路 两端的变电设备和用电设备。该融冰方式可实现 在不停电情形下进行融冰操作,避免了重要输电线 路因其融冰需停电而给电力系统造成的重大损失。

2 高频激励下覆冰导线数学模型

为方便分析,忽略导线间的临近效应,仅考虑 单根导线与地面构成的传输线模型,该模型横截面 如图2所示。在图2中,r₁为导线的半径,r₂覆冰后 包括覆冰层的导线半径,h_d为导线中心离地高度, C_{ice}为冰层的等效电容,G_{ice}为冰层等效电导,C为冰 层对地等效电容。

图 2 覆冰导线横截面模型 Figure 2 Cross-sectional model drawing of ice-covered

假设输电线沿线冰层厚度均匀,即线路上各参数分布均匀,即可将覆冰线路视作有损均匀传输线。覆冰线路可等效为经典均匀传输线模型,如图 3^[13]所示。

在图 3 中, u_x 、 i_x 为线路上某一点的电压与电流, R_0 、 L_0 , C_{eq} 、 G_{eq} 分别为传输线路的单位长度电阻、电 感、电容、电导。相关参数的计算公式^[14-15]如下:

$$R_{0} = [\pi \sigma d (2r_{1} - d)]^{-1}$$
 (1)

$$L_{0} = \frac{\mu_{0}}{2\pi} \ln \frac{2h_{d}}{r_{1}}$$
(2)

$$C = 2\pi\varepsilon_0 \left(\ln \frac{2h_d}{r_2} \right)^{-1} \tag{3}$$

$$C_{\rm ice} = 2\pi\varepsilon_0\varepsilon_r \left(\ln\frac{r_2}{r_1}\right)^{-1} \tag{4}$$

$$G_{\rm ice} = \omega C_{\rm ice} \tan \delta \tag{5}$$

$$d = \sqrt{\frac{1}{\pi f \mu_0 \mu_r \sigma}} \tag{6}$$

$$C_{\rm eq} = \frac{CC_{\rm ice} [C + C_{\rm ice} (1 + \tan^2 \delta)]}{(C + C_{\rm ice})^2 + (C_{\rm ice} \tan \delta)^2}$$
(7)

$$G_{\rm eq} = \frac{\omega C C_{\rm ice}^2}{(C + C_{\rm ice})^2 + (C_{\rm ice} \tan \delta)^2}$$
(8)

式中, σ 为导线电导率; μ_0 为真空磁导率; ϵ_0 为真空介 电常数; ϵ_r 为冰层相对介电常数实部;tan δ 为冰层介 质损耗角正切值; μ_r 为导线相对磁导率;d为集肤效 应深度;f为电源频率;ω为角频率。

根据均匀传输线理论,结合高频融冰边界条件:始端电压 $\dot{U}_1 = \dot{U}_s$,末端电压 $\dot{U}_2 = 0$,可得沿线电压电流的高频分量特解 \dot{U}_x 与 \dot{I}_x ,其形式为

$$\begin{cases} \dot{U}_{x} = \frac{\dot{U}_{s}}{1 - e^{2\gamma t}} (-e^{2\gamma t} e^{-\gamma x} + e^{\gamma x}) \\ \dot{I}_{x} = \frac{\dot{U}_{s}}{Z_{c} (1 - e^{2\gamma t})} (-e^{2\gamma t} e^{-\gamma x} - e^{\gamma x}) \end{cases}$$
(9)

式中, \dot{U}_s 为高频融冰电源电压;x为距离融冰电源的 距离;l为待融冰线路长度; γ 为传播常数; Z_c 为线路 的波阻抗。

$$\begin{cases} \gamma = \sqrt{(R_0 + j\omega L_0)(G_{eq} + j\omega C_{eq})} = \alpha + j\beta \\ Z_c = \sqrt{\frac{R_0 + j\omega L_0}{G_{eq} + j\omega C_{eq}}} \end{cases}$$
(10)

故有输入阻抗Zin:

$$Z_{\rm in} = Z_{\rm c} \frac{e^{2\alpha l} [\cos\left(2\beta l\right) + j\sin\left(2\beta l\right)] - 1}{e^{2\alpha l} [\cos\left(2\beta l\right) + j\sin\left(2\beta l\right)] + 1} \quad (11)$$

在高频激励下,由于传输线参数满足: $\omega L_0 \gg R$, $\omega C_{eq} \gg G_{eq}$,故波阻抗 Z_c 可近似为一个纯电阻。由 式(11)可知,可调整电源频率f,使得 $sin(2\beta l) = 0$, 从而使输入阻抗 Z_i 也近似为一个纯电阻,这样可以 保证电源功率因素接近1。

单位长度导线产生的高频分量:欧姆热 P_{ohm1}、冰层的介质热 P_{die1}、总热 P_{sum1}的表达式如下:

$$\begin{cases} P_{ohm1}(x) = I_x^2 R_0 \\ P_{die1}(x) = V_x^2 G_{eq} \\ P_{sum1}(x) = P_{ohm1}(x) + P_{die}(x) \end{cases}$$
(12)

式中,*I_x、V_x*分别为沿线高频电流和高频电压的有效 值。当电源频率和电压确定时,它们可由式(9)计 算得到。

该文研究对象为交流输电线路,结合文献[1], 在线融冰时融冰线路的热量包括高频和工频分量 产生的热量,根据谐波功率损耗的可叠加性^[16],故 在线融冰时的欧姆热*P*_{ohm}、冰层的介质热*P*_{die}、总热 *P*_{sum}分别为

$$\begin{cases} P_{ohm}(x) = I^2 R_{dc} + P_{ohm1}(x) = I_x^2 R_0 + I^2 R_{dc} \\ P_{die}(x) = V_x^2 G_{eq} \\ P_{sum}(x) = P_{sum1}(x) + P_{die}(x) \end{cases}$$
(13)

式中,*I*为工频电流有效值;*R*_{dc}为导线的直流电阻(近似工频电阻);*P*_{ohm}、*P*_{sum}分别为在线融冰时的沿线欧姆热与总热。

根据这些分析,电源频率通过影响串联电阻 R₀,并联电导G_{eq}的相对大小影响导线欧姆热和冰层 介质热的大小,进而影响沿线总热的均匀性,同时 影响电源端功率因素的大小;通过增大沿线电压与 电流的高频分量,可以增大热量从而保证融冰时 间。但过高的电源频率会加重融冰期间的无线电 干扰问题,过高的电源电压会加大融冰电源电力电 子器件耐压等级,故而寻找合适的高频融冰电源频 率与电压至关重要。目前,融冰电源参数选择主要 考虑在满足功率均匀度及功率因素的基础上,寻找 满足融冰需求的最小电压与频率。但由于功率均 匀度与电源频率,电源电压与发热量间的相互冲 突,选择的参数存在局限性,且未考虑工程实际中 输电导线允许耐压与耐流等约束。所以建立高频 在线融冰多目标优化模型,重点考虑高频融冰需满 足的约束条件,引入多目标优化算法自动寻找满足

3 高频高压融冰多目标优化模型

多目标优化问题一般可写成如下数学模型^[17]: min $F(x) = [f_1(x), f_2(x), \dots, f_m(x)]^T$

s.t.
$$\begin{cases} g_i(x) \leq 0, & i = 1, 2, \cdots, n \\ h_j(x) = 0, & j = 1, 2, \cdots, v \\ l_k \leq x_k \leq u_k, & k = 1, 2, \cdots, w \end{cases}$$
(14)

式中, $x = (x_1, x_2, \dots, x_w)^T$ 为w维空间的决策变量; x_k 为第k个决策变量; l_k 为其下限, u_k 为其上限; $f_m(x)$ 为由决策变量x构成的第m个目标函数; $g_i(x)$ 为由决策变量x构成的第i个不等式约束; $h_j(x)$ 为由决策变量x构成的第j个等式约束;满足这所有n+v个约束的解称为可行解。

3.1 决策变量

根据文1分析可知,电源频率f、电源电压U_s的 设计对高频融冰至关重要,故该文决策变量即为高 频融冰电源的频率f及电压U_s。

3.2 目标函数分析

3.2.1 最大化沿线最小热

以沿线最小热所在的地方融冰结束作为全线融冰结束的标准,最大化沿线最小热,减少融冰时间。

 $f_1(f, U_s) = \max(\min(P_{sum}(x)))$ (15) 3.2.2 最小化融冰频率

当输电线路施加高频交流电源时,其产生的高频电磁波会对周围的弱电装置和通信设备造成一

频电磁波会对周围的弱电装置和通信设备造成一 定的干扰。此时,为了兼顾融冰效果和外部通信设 备的可靠性,最好降低附加融冰电源的频率。故应 最小化融冰电源频率,以降低无线电干扰。

$$f_2(f, U_s) = \min f \tag{16}$$

3.2.3 最小化融冰电压

交流融冰电源一般通过变电站先经变压器,再 经整流单元和逆变单元获得,为降低整流逆变单元电 力电子器件的复杂程度和绝缘负担,同时保证在电压 波谷时接入融冰电源,最小化电源电压。此处将融冰 频率f、电压U。既作为决策变量,也作为目标函数。

$$f_3(f, U_s) = \min U_s \tag{17}$$

3.3 约束条件分析

3.3.1 临界融冰功率约束

当线路发热满足临界融冰功率时,才能有效融 冰,故必须保证全线各处叠加上线路正常负荷时的 工频热功率的高频热功率满足临界融冰功率条件。 定义临界融冰功率,使得导线外表面与冰层内表面 的接触面温度保持在0℃。在本文中,临界融冰功 率由导线的欧姆热与冰层的介质热构成,欧姆热和 介质热一同向外传递,其与对外界空气的辐射散热 和对流散热达到平衡状态。由于在工程实际中覆 冰线路长度远大于导线与覆冰的半径,这种圆柱形 传热问题可以简化为一维传热问题^[18]。根据图2导 线覆冰的横截面图,可列出覆冰导线的稳态导热微 分方程:

$$\begin{cases} \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left(r \frac{\mathrm{d}t_1}{\mathrm{d}r} \right) + \frac{q_1}{\lambda_1} = 0, \quad r < r_1 \\ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left(r \frac{\mathrm{d}t_2}{\mathrm{d}r} \right) + \frac{q_2}{\lambda_2} = 0, \quad r_1 < r < r_2 \end{cases}$$
(18)

初值条件为

$$\begin{cases} t_1 = t_2 \\ r = r_1 \\ t_2 \\ r = r_2 \end{cases} (19)$$

$$\begin{vmatrix} \frac{dt_{1}}{dr} |_{r=0} = 0 \\ -\lambda_{1} \frac{dt_{1}}{dr} = -\lambda_{2} \frac{dt_{2}}{dr} |_{r=r_{1}} \\ -\lambda_{2} \frac{dt_{2}}{dr} |_{r=r_{2}} = (h_{i} + E_{1}S_{1}t_{e}^{3}) (t_{ice} - t_{e}) \end{aligned}$$
(20)

式(18)~(20)中,r为距离导线圆心的距离; t_1 、 t_2 分别为导线、冰层的温度关于变量r的函数; t_{ice} 、 t_e 分别为冰层外表面、环境的温度; λ_1 、 λ_2 分别为导线、冰层的热传导系数; q_1 、 q_2 分别为导线、冰层的体积内热源密度; h_i 为冰层外表面对流换热系数; S_1 为冰层外表面辐射散热系数; E_1 为 Stenfan-Boltcoman 常数。

根据文1,体积内热源的计算公式为

$$\begin{cases} P_{ohm} = \pi r_1^2 q_1 \\ P_{die} = (\pi r_2^2 - \pi r_1^2) q_2 \end{cases}$$
(21)

联立求解式(18)~(21),并代入临界融冰条件: $t_1 = t_2 \Big|_{r=r_1} = 0, 整理化简, 可得临界融冰状态欧$ 姆热与介质热需满足的方程,即

$$\begin{cases} \frac{1}{4\lambda_2} + \frac{1}{(r_2^2 - r_1^2)} \left[\frac{r_1^2}{2\lambda_2} \ln \frac{r_1}{r_2} + \frac{1}{h_1 + S_1 E_1 t_e^3} \cdot \left(-\frac{r_1^2}{2r_2} + \frac{1}{2} r_2 \right) \right] \\ \frac{P_{\text{die}}}{\pi} + \left(-\frac{1}{2\lambda_2} \ln \frac{r_1}{r_2} + (22) - \frac{1}{h_1 + S_1 E_1 t_e^3} \frac{1}{2r_2} \right) \frac{P_{\text{ohm}}}{\pi} + t_e = 0 \end{cases}$$

其中,

$$h_{i} = \frac{0.117\lambda_{a} \left(\frac{2r_{2}V\rho_{a}}{\mu_{a}}\right)^{0.68}}{2r_{2}}$$
(23)

式中, ρ_a 为空气密度;V为风速; λ_a 为空气导热系数; μ_a 为空气黏滞系数。

从式(22)可以看出,临界融冰功率不再仅只与 外界环境因素有关,其还是与欧姆热和介质热分配 比例有关的一个变量。

以欧姆热 Pohm 为横坐标,介质热 Pdie 为纵坐标, 根据式(22)绘制示意图,结果如图4所示。当沿线 各个地方上的热功率所描绘的散点均在临界融冰 功率这条线的上方时,即可进行融冰操作,即融冰 操作需满足式(22)左端大于零。这里为留出一定 的裕度,假设覆冰时的环境温度只能为负,故在环 境温度前乘上大于1的系数,本文取其值为1.1,即 最终须满足关系式:

$$\begin{cases} \frac{1}{4\lambda_{2}} + \frac{1}{(r_{2}^{2} - r_{1}^{2})} \left[\frac{r_{1}^{2}}{2\lambda_{2}} \ln \frac{r_{1}}{r_{2}} + \frac{1}{h + S_{1}E_{1}t_{e}^{3}} \cdot \left(-\frac{r_{1}^{2}}{2r_{2}} + \frac{1}{2}r_{2} \right) \right] \\ \begin{cases} \frac{1}{h_{i}} + \frac{1}{2r_{2}} + \frac{1}{2}r_{2} \\ \frac{1}{h_{i}} + \frac{1}{2r_{2}} + \frac{1}{2r_{2}} \\ \frac{1}{\pi} + \frac{1}{2r_{2}} + \frac{1}{2r_{2}} \\ \frac{1}{\pi} + \frac{1}{2r_{2}} + \frac{1}{2r_{2}} \\ \frac{1}{\pi} + \frac{1}{2r_{2}} + \frac{1}{\pi} + \frac{1}{2r_{2}} \\ \frac{1}{\pi} + \frac{1}{2r_{2}} + \frac{1}{\pi} + \frac{1}{2r_{2}} \\ \frac{1}{\pi} + \frac{1}{2r_{2}} + \frac{1}{\pi} + \frac{1}{2r_{2}} \\ \frac{1}{\pi} + \frac{1}{2r_{2}} + \frac{1$$

3.3.2 线路最大允许载流量约束

高频融冰的多目标优化问题求解总会出现功 率均匀度不高的情况,导致沿线某些地方总热较 大,且总热几乎全由欧姆热构成,本文4.1节中参 数2的高频热功率沿线分布如图5所示。从图5中 可以看出,距离电源首端24500m处的总热波峰 处即出现了这种情况。这时为满足全线融冰,在 总热较大地方的冰层已经融化,而总热较小地方 的冰层还未融化,融冰电源依旧工作,较大的欧姆 热使得导线温度进一步升高,可能会导致沿线某 处超过导线的最大允许温度,故需对沿线电流进 行约束。

图 5 参数 2 沿线高频热功率 Figure 5 High-frequency thermal power diagram along parameter 2

本文线路最大载流量计算基于《110 kV~ 750 kV架空输电线路设计规范》(GB 50545—2010) 所推荐的 Morgan 公式法。该方法基于热平衡原 理,当导线达到允许的最高温度时,导线发出的热 量与散失的热量平衡,此时的载流量即为导线的最大 载流量。根据应用场景分析,载流量约束对象为沿线 已经融冰处,故此处导线发出的热量仅含欧姆热。

故有如下热平衡方程:

 $I_{max}^{2}R_{0} + I^{2}R_{dc} = W_{F} + W_{R} - W_{S}$ (25) 式中, I_{max} 为线路允许最大载流量; W_{F} 、 W_{R} 、 W_{S} 分别 为导线外表面对流散热、辐射散热、光照吸热量。

故对于高频沿线电流La需满足

$$I_{x} \leqslant I_{\max} = \sqrt{\frac{W_{\rm F} + W_{\rm R} - W_{\rm S} - I^{2}R_{\rm dc}}{R_{\rm 0}}} \quad (26)$$

其中,

$$\begin{cases} W_{\rm F} = 2\pi r_1 h_c (t_{\rm max} - t_{\rm e}) \\ W_{\rm R} = 2\pi r_1 E_1 S_2 t_{\rm e}^3 (t_{\rm max} - t_{\rm e}) \\ W_{\rm S} = 2A_{\rm S} J_{\rm s} r_1 \end{cases}$$
(27)

式(26)、(27)中,tmax为导线允许的最高温度;As为导

线表面吸热系数;*J*_s为光照强度;*S*₂为导线外表面辐 射散热系数;*h*_s为导线外表面对流散热系数(将导线 半径代入式(23)计算得到)。

3.3.3 线路耐压值约束

由于高频激励下沿线电压呈准驻波分布,应保 证高频电压叠加线路正常负荷的工频电压不超过 输电线路的绝缘水平。交流线路的绝缘水平一般 按过电压倍数而定。故沿线高频电压V.应满足:

$$V_x \leqslant k_{\rm ac} V_{\rm ac} - \frac{V_{\rm ac}}{\sqrt{2}} \tag{28}$$

式中, kac 为交流线路过电压倍数, 一般取其值为 2.0~2.5; Vac 为交流线路对地电压有效值。

3.3.4 电源端功率因素约束

高频融冰属于交流融冰方法中的一种。其电 源端功率因素的大小将决定电源容量的大小,为降 低高频电源容量,需对电源端功率因素进行约束。

故电源端功率满足:

$$\cos\theta = \cos(Z_{\rm in}) \geqslant \tau \tag{29}$$

式中,θ为电源端功率因素角;τ为指定的功率因素 约束值,这里取值为0.99。

3.3.5 其他约束条件

在进行高频电源参数设计时,为符合电力电子器件的合理性条件与避免电磁干扰,应对电源频率 f、电源电压U。进行约束^[19],即

$$\begin{cases} U_{s_{\circ}\min} \leqslant U_{s} \leqslant U_{s_{\circ}\max} \\ f_{\min} \leqslant f \leqslant f_{\max} \end{cases}$$
(30)

式中, U_{s.min}、U_{s.max}分别为融冰电源的最小、最大电压; f_{min}、f_{max}分别为融冰电源最小、最大频率。

3.4 多目标优化算法

由于多目标优化问题不同目标函数间相互制 约,优化其中一个目标的同时会牺牲其他的目标, 很难找到可以同时优化所有目标的解,所以多目标 问题一般所求得的是一个包含互不支配的若干个解 的解集,称其为Pareto最优解集。目前,较为常见的 多目标优化算法有:非支配排序遗传算法(NSGA), 多目标进化算法,多目标粒子群算法等。NSGA-II 作为多目标优化算法的经典算法之一,在2000年由 Srinivas和Deb等提出,其主要优点:①提出了快速 非支配排序概念,降低了计算复杂度;②添加了精 英保留机制,保证已经优化得到的最优解不丢失, 提高了算法收敛性;③采取了拥挤度算子,确保解 的多样性。

故本文选用NSGA-Ⅱ算法求解高频融冰多目

标优化模型。在得到Pareto最优解集后,根据应用 场景,指定不同的目标函数权重,选出相应最优解。 TOPSIS法^[20]是一种常用的组内综合评价方法,本 文通过指定不同目标函数的权重,根据 TOPSIS法 对不同方案进行排序,充分利用原始数据的信息, 其结果能精确地反映各方案之间的差距。目标函 数的权重越大,其对应目标的偏好程度越高。

对多目标优化问题的 Pareto 解集而言, 假设具 有 *n* 个待评价个体, *m* 个评价指标的问题, 即可构建 原始矩阵:

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nm} \end{bmatrix}$$
(31)

TOPSIS算法主要步骤如下。

 为避免量纲影响,先标准化处理,根据指标 含义,可将其分为逆向指标z⁺_{ij}和正向指标z⁺_{ij},分别 进行标准化,即

$$\begin{cases} z_{ij}^{+} = \frac{\max(x_{j}) - x_{ij}}{\max(x_{j}) - \min(x_{j})} \\ z_{ij}^{-} = \frac{x_{ij} - \min(x_{j})}{\max(x_{j}) - \min(x_{j})} \end{cases}$$
(32)

式中,*x_{ij}为第i*个评价个体中第*j*个指标的数值。 得到标准化后的矩阵记为

$$Z = \begin{bmatrix} z_{11} \ z_{12} \ \cdots \ z_{1m} \\ z_{21} \ z_{22} \ \cdots \ z_{2m} \\ \vdots \ \vdots \ \ddots \ \vdots \\ z_{n1} \ z_{n2} \ \cdots \ z_{nm} \end{bmatrix}$$
(33)

2) 指定各优化目标权重,并计算各样本距正、 负理想解距离*D*⁺_i与*D*⁻_i,即

$$\begin{cases} D_{i}^{+} = \sqrt{\sum_{j=1}^{m} \omega_{j} (z_{ij} - z_{j}^{+})^{2}} \\ D_{i}^{-} = \sqrt{\sum_{j=1}^{m} \omega_{j} (z_{ij} - z_{j}^{-})^{2}} \end{cases}$$
(34)

式中, ω_j为第 j个指标的权重, 所有指标的权重相加 应为1, 权重可以决策者主观给定得出, 也可由偏客 观的熵权法等数据分析算法得出。

由于不同融冰场景需求不同,而数据分析算法 仅体现数据间的规律,不能代表工程问题偏好,故 该文由决策者根据需求制定权重。其中,z_j⁺、z_j⁻称 为正、负理想解。

$$\begin{cases} z_{j}^{+} = \max(z_{1j}, z_{2j}, \dots, z_{nj}) \\ z_{j}^{-} = \min(z_{1j}, z_{2j}, \dots, z_{nj}) \end{cases}$$
(35)

3)结合距离值计算得出综合评价得分*C_i*,*C_i越*大,评价对象越逼近正理想解。

$$C_{i} = \frac{D_{i}^{-}}{D_{i}^{+} + D_{i}^{-}}$$
(36)

4)根据综合评价得分排序选择最优的解。
 综上所述,采用的算法流程图如图6所示。

4 多目标优化结果分析及有限元仿 真验证

4.1 多目标优化结果分析

本文以110 kV 等级交流输电线路为研究对象, 高频融冰多目标优化模型具体参数整理结果见表1。

采用Python 3.8中Geatpy 2.7模板编写NSGA-II 算法,对文3建立的多目标优化模型求解,算法核心 参数如最大迭代次数和种群规模将直接影响算法 的求解速度与结果精度。综合考虑求解精度与时 间,该文NSGA-II算法的相关参数及取值见表2。

得到 Pareto 最优解集如图 7 所示。从图 7 中可 以看出,通过 NSGA-II 算法对该多目标优化模型求 解,获得了较为广泛的 Pareto 解集,证明了该算法在 高频融冰电源参数多目标优化设计上的适用性。

同时不难发现这3个目标函数中沿线最小热与 最小化电源频率和电源电压均存在着冲突。增大 沿线最小热、加快融冰的同时,会伴随着融冰频率 和电压的提升,对周围无线电设备的高频干扰会更 严重。因此,从Pareto最优解集中挑选最优解时,应 综合考虑工程实际需求,本文根据决策者偏好,对 高频融冰电源设计3组参数。

 1) 仅考虑最小化电源参数,而不考虑融冰快 慢。即令w₁=0.0,w₂=0.5,w₃=0.5,即可得到使得 电源频率、电压最小的参数。

2)同时考虑融冰电源参数与沿线最小热,此时,w₁=0.4,w₂=0.4,w₃=0.2。

表1 导线参数、环境参数和冰层参数

Table 1 Wire params, environmental params and ice params

分类	描述及符号	单位	数值
	导线恒压热容	$J/(kg \cdot K)$	2 689
	导线热传导系数	$W/(m \boldsymbol{\cdot} K)$	237
	导线密度	kg/m^3	951
	导线最大允许温度 tmax	°C	90
导线参数	线路长度1	km	50
	导线半径r1	m	0.01
	导线电导率σ	S/m	3×10^7
	导线相对磁导率μr	—	1
	导线外表面辐射散热系数S2	_	0.9
	线路离地高度 h _d	m	12
	真空磁导率μ ₀	H/m	$4\pi imes 10^{-7}$
	真空介电常数 ϵ_0	F/m	8.85×10^{-12}
	空气密度 ρ_a	kg/m^3	1.293
环境参数	空气黏滞系数µ _a	$kg/(m \cdot s)$	1.72×10^{-5}
	空气热传导系数λ _a	$W/(m \cdot K)$	0.024 4
	风速V	m/s	5
	环境温度 t _e	°C	-10
	光照强度J _s	W/m^2	0
	冰层恒压热容	$J/(kg \cdot K)$	2 050
	冰层相对磁导率	—	1
	冰层电导率	S/m	0
冰层参数	冰层外表面辐射散热系数S1	_	0.9
	冰层热传导系数λ ₂	$W/(m \boldsymbol{\cdot} K)$	2.3
	冰层密度	kg/m^3	1 000
	包含覆冰半径r ₂	m	0.01
	冰层相对介电常数 ϵ_r	—	3
	冰层介质损耗角正切值 tan ∂	_	0.1

表2 NSGA-Ⅲ算法参数

Table 2 NSGA- II algorithm params

描述	数值
交叉概率	0.2
变异概率	0.9
最大迭代次数	1 000
种群规模	100
决策变量下限	1 kHz,1 kV
决策变量上限	100 kHz,20 kV

3) 仅保证尽快融冰,而不考虑融冰电源频率和 电压较大造成的无线电干扰和电力电子器件复杂 化问题。即 $w_1=1.0, w_2=0.0, w_3=0.0,$ 即可得到使 得沿线最小热最大的参数。

这些w₁、w₂、w₃分别为沿线最小热、融冰电源频 率和融冰电源电压的权重,这3组参数的目标函数 见表3。

表3 3组参数关键数据	
-------------	--

Т	Table 3 Key data	a for 3 sets of pa	rameters
参数	电源电压/ kV	电源频率/ kHz	沿线最小热/ (W•m ⁻¹)
1	7.309	11.63	56.53
2	9.232	14.55	70.01
3	20.000	43.62	145.57

图 8 为这 3 组不同参数的沿线功率因素结果对 比结果。

从图8可以看出,沿线功率因素在沿线呈现周 期性的分布,随着频率的增大,出现功率因素极大 值间隔在减小,尽管整条输电线路的功率因素比较低,且线路短路处功率因素更是接近于0,但3组参数均保证了电源端功率因素接近于1,保证了电源 仅发有功功率,进而有效降低了电源容量。

图 9 为 3 组不同参数沿线高频电压分布。从图 9 中可以看出,通过优化电源电压,不同权重下的电 源参数均保证了融冰电源在沿线电压波谷处接入, 有效降低了融冰电源电压,能够有效减轻产生融冰 交流电源整流逆变单元绝缘负担的制造成本。

4.2 有限元仿真验证

为验证融冰模型的有效性,使用Comsol软件通 过有限元法对这3组电源参数激励下的沿线热功率 最小处进行电磁热耦合仿真。沿线最小热处的关 键数据可将电源参数代入式(12)计算得到,整理结 果见表4。

表 4	不同参数沿线最小处关键数据	
-----	---------------	--

Table 4	Key data at the minimum along the
	different parameters

参数	最小热处电流/A	最小热处电压/kV	最小热位置/m
1	2.017	131.458	43 750
2	2.003	140.586	45 004
3	310.600	0.001	50 000

仿真所需的参数见表1,仿真涉及的物理场模 块包括电场、磁场、固体传热模块。这里假设在冰 融化过程中,冰层产生的介质热不发生变化。

电磁场与固体传热模块所建立的有限元模型与 文1所阐述的一致,如图10所示。值得注意的是:外界 空气域的大小需满足导线到空气边界距离是导线到 地面距离的3~4倍以上,才能保证仿真的准确性^[21]。

图 10 有限元仿真模型 Figure 10 Finite element simulation model diagram

高频融冰多物理场耦合仿真分析流程如图 11 所示。在图 11 中,将沿线最小热处电压作为电场激励,通过求解空气域和覆冰层的电流平衡方程,得 到传输线等效电容和电导,进而得到冰层和空气的 介质热;将沿线最小热处电流作为磁场激励,通过 求解导线域平面外电流的磁方程,得到传输线等效 电阻和电感,进而得到导线欧姆热;将其共同作为 固体传热模块热源,求解传热方程,即可得到覆冰 导线温度分布。

图11 有限元仿真流程 Figure 11 Finite element simulation flow chart

表5给出了所求得的3组电源参数与根据式(1)、 (2)、(7)、(8)所计算出的传输线参数与Comsol电磁 场仿真得到并联电容、并联电导、串联电阻、串联电 感等参数对比。由表4可知,有限元仿真值与模型计 算值基本一致。其中,串联电阻和并联电导均随着 频率的增大而增大,串联电感和并联电容几乎保持 不变,验证了本文覆冰电路模型的正确性。

经 COMSOL 仿真,得到这 3 组不同参数下冰层 内表面及外表面平均温度随时间变化,如图 12 所示。 从图 12 中可以看出,参数 1、2、3 对应沿线最小热的冰 层外表面温度分别在 14.0、2.9、0.4 h时超过 0 ℃,可视 该时间为完成融冰所需时间,该时间随着目标函数 沿线最小热设置权重的增大而减小。其中,参数3仅 使用0.3h完成融冰,而参数1融冰时间长达25.0h, 这是对应沿线最小热权重分别为1和0导致的。由 此可见,仿真结果与目标函数权重设置相符合。

表5 传输线参数对比表

Table 5 Comparison table of transmission line parame
--

串联电阻 频率/ /(10 ⁻⁴		串联电感 /(10 ⁻⁶		并联电容 /(10 ⁻¹²		并联电导 /(10 ⁻⁹		
kHz	$\Omega \cdot m^{-1})$		$H \cdot m^{-1})$		$F \cdot m^{-1}$)		$S \cdot m^{-1})$	
	公式	有限元	公式	有限元	公式	有限元	公式	有限元
11.63	6.50	6.51	1.56	1.56	7.60	7.56	1.74	1.73
14.55	7.24	7.25	1.56	1.56	7.60	7.56	2.17	2.16
43.62	12.33	12.43	1.56	1.55	7.60	7.56	6.41	6.47

5 结语

在对现有高频融冰电源参数设计的基础上,结 合高频融冰热平衡过程,重点研究了高频融冰过程 需考虑的约束条件:临界融冰约束、最大允许载流 量约束、线路耐压值约束等,同时引入多目标优化 算法,将融冰电源参数设计问题转化为一个带约束 的多目标优化问题,提出了一种基于NSGA-II的高

45

频融冰电源参数设计方法,得到如下结论:

 高频临界融冰功率不仅与外界环境和导线 参数有关,而且是与冰层介质热与导线欧姆热分配 比例有关的变量;

 2)通过优化电源电压及约束电源端功率因素, 保证了高频电源电压取极小值,且近乎仅发有功功率,降低了电源电压和电源容量;

3)通过电磁热耦合仿真验证,该模型最快0.3h 完成融冰,最慢25.0h完成融冰。该方法能根据决 策者的偏好,通过设定不同目标函数的权重,设计 出适用不同场景的高频融冰电源参数。

参考文献:

[1] 胡涛,汤赐,蔡杰,等.输电线路附加融冰电源的最佳频率及电压确定方法[J].电力科学与技术学报,2020,35
 (3):155-161.

HU Tao, TANG Ci, CAI Jie, et al. Optimal frequency and voltage determination method of de-icing power source for transmission lines[J]. Journal of Electric Power Science and Technology,2020,35(3):155-161.

- [2] 胡海洋,张欢,伍晓红,等.基于等线长迭代的特高压直线塔 地线不平衡张力计算[J].智慧电力,2023,51(2):118-123.
 HU Haiyang, ZHANG Huan, WU Xiaohong, et al. Calculation of unbalance tension of ground wire for UHV suspension tower based on equilinear length iteration[J].Smart Power,2023,51(2):118-123.
- [3] 蒋兴良,张志劲,胡琴,等.再次面临电网冰雪灾害的反思与思考[J].高电压技术,2018,44(2):463-469.
 JIANG Xingliang,ZHANG Zhijin,HU Qin,et al. Thinkings on the restrike of ice and snow disaster to the power grid [J].High Voltage Engineering,2018,44(2):463-469.
- [4] 王勇, 苗虹, 莫思特, 等. 高压架空输电线路防冰、融冰、 除冰技术研究综述[J]. 电力系统保护与控制, 2020, 48 (18):178-187.

WANG Yong, MIAO Hong, MO Site, et al. Summary of research on anti-ice, ice melting and de-icing of high voltage overhead transmission lines[J]. Power System Protection and Control, 2020, 48(18): 178-187.

- [5] 杨知,赵彬,李闯,等.基于星地融合的输电线路覆冰预 警优化方法研究[J].电测与仪表,2022,59(11):54-62. YANG Zhi, ZHAO Bin, LI Chuang, et al. Study on optimization method of transmission line icing prediction based on satellite-ground fusion[J]. Electrical Measurement & Instrumentation,2022,59(11):54-62.
- [6] 班国邦,谈竹奎,郝正航,等.多能互补柔性互联配电网 在线融冰方法[J].南方电网技术,2019,13(9):43-48.
 BAN Guobang, TAN Zhukui, HAO Zhenghang, et al. Research on online de-icing method with multicomplementary energy for VSC interconnected distribution network[J]. Southern Power System

Technology,2019,13(9):43-48.

 [7] 曾薇,周羽生,黄欣超,等.考虑冰层下移的输电线路高频融冰温升影响因素分析[J].高压电器,2023,59(4): 98-105.

ZENG Wei, ZHOU Yusheng, HUANG Xinchao, et al. Influencing factors analysis of high frequency ice melting temperature rise for transmission lines considering ice moving down[J].High Voltage Apparatus, 2023,59(4):98-105.

- [8] 熊强,周羽生,王贤军,等.高频融冰与交流短路融冰对 比分析研究[J].电测与仪表,2018,55(20):40-45.
 XIONG Qiang, ZHOU Yusheng, WANG Xianjun, et al. Comparative analysis of high frequency deicing and AC short-circuit deicing[J]. Electrical Measurement & Instrumentation,2018,55(20):40-45.
- [9] 彭志勇,周羽生,何洋,等.输电导线高频激励融冰的临 界电流分析[J].高压电器,2021,57(5):108-114. PENG Zhiyong,ZHOU Yusheng,HE Yang,et al.Analysis of critical current for high-frequency excitation de-icing transmission line[J].High Voltage Apparatus,2021,57(5): 108-114.
- [10] 焦重庆,齐磊,崔翔,等. 输电线路外施中频电源融冰技术[J].电工技术学报,2010,25(7):159-164.
 JIAO Chongqing, QI Lei, CUI Xiang, et al. Power line deicing using medium frequency power source[J]. Transactions of China Electrotechnical Society,2010,25(7):159-164.
- [11] 李鹏,刘玢岩,习伟,等.基于模型参数辨识的串联补偿 输电线路纵联保护原理[J].电力系统保护与控制,2022, 50(22):20-28.

LI Peng, LIU Binyan, XI Wei, et al. Pilot protection principle based on model parameter identification for a seriescompensated transmission line[J]. Power System Protection and Control,2022,50(22):20-28

- [12] 谷文升,汤赐,张承烨,等. 输电线路中频融冰频率与热 功率均匀度分析[J].广东电力,2020,33(1):93-99.
 GU Wensheng, TANG Ci, ZHANG Chengye, et al. Analysis of medium-frequency de-icing frequency and thermal power uniformity for transmission lines[J]. Guangdong Electric Power,2020,33(1):93-99.
- [13] 邱关源,罗先觉.电路[M].北京:高等教育出版社,2006.
 QIU Guangyuan, LUO Xianjue. Circuit [M]. Beijing: Higher Education Press,2006.
- [14] PAUL C R. Introdution to electromagnetic compatibility[M].New York: John Wiley & Sons Inc. 1992.
- [15] KAISER K L. Electromagnetic compatibility handbook[M].Boca Raton:CRC Press,2005.
- [16] 王超.谐波对导体电阻的影响及实验研究[D].北京:华 北电力大学,2017.

WANG Chao. Influence of harmonics on conductor resistance and its experimental study[D]. Beijing: North China Electric Power University,2017.

(下转第57页 Continued on page 57)

particle swarm optimization[J]. Power System and Clean Energy,2022,38(10):98-105.

- [22] GHORBANI N,KASAEIAN A,TOOPSHEKAN A, et al. Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability[J].Energy,2018,154:581-591.
- [23] 陈志刚,梁涤青,邓小鸿,等.Logistic 混沌映射性能分析
 与改进[J].电子与信息学报,2016,38(6):1547-1551.
 CHEN Zhigang,LIANG Diqing,DENG Xiaohong, et al.
 Performance analysis and improvement of logistic
 chaotic mapping[J].Journal of Electronics & Information
 Technology,2016,38(6):1547-1551.
- [24] 孙鹏,罗明武,孙朝霞,等.采用改进杜鹃搜索算法的主动配电网双层分布式风电规划方法[J].电网技术,2016,40(9):2743-2751.
 SUN Peng, LUO Mingwu, SUN Zhaoxia, et al. An

improved approach based on cuckoo search algorithm for bi-level distributed wind generation planning in active distribution network[J].Power System Technology, 2016,40(9):2743-2751.

- [25] 惠慧,李蕊,朱逸镝,等.含高比例分布式光伏的配电网 多目标概率规划方法[J].电测与仪表,2023,60(11):2-10.
 HUI Hui, LI Rui, ZHU Yidi, et al. Multi-objective probabilistic planning method for distribution network with high proportion of distributed photovoltaic[J]. Electrical Measurement & Instrumentation,2023,60(11):2-10.
- [26] 冷亚军,岳鑫,卢毅勤,等.基于最小叉熵与前景理论的综合 能源系统评价方法[J].智慧电力,2021,49(6):40-45+90.
 LENG Yajun,YUE Xin,LU Yiqin,et al.Integrated energy system evaluation method based on minimum cross entropy and prospect theory[J].Smart Power,2021,49(6): 40-45+90.

- [27] 邵一凡,禹春霞,禹嘉诚.基于改进NSGA-II算法的云制 造服务组合优化研究[J].运筹与管理,2022,31(11):30-36. SHAO Yifan, YU Chunxia, YU Jiacheng. Cloud manufacturing service composition optimization based on improved NSGA-II algorithm[J]. Operations Research and Management Science,2022,31(11):30-36.
- [28] 冷亚军,吴宗育,赵文会,等.基于近邻传播聚类权重的黑启 动方案评估方法[J].电力系统自动化,2020,44(13):73-80. LENG Yajun, WU Zongyu, ZHAO Wenhui, et al. Assessment method of black-start scheme based on affinity propagation clustering weight[J]. Automation of Electric Power Systems,2020,44(13):73-80.
- [29] 胡伟,杨梓俊,王瑾然,等.园区综合能源系统日前多目标优化调度[J].电力科学与技术学报,2021,36(1):13-20.
 HU Wei, YANG Zijun, WANG Jinran, et al. Multi-objective optimal scheduling of integrated energy system in the industry park[J].Journal of Electric Power Science and Technology,2021,36(1):13-20.
- [30] 冷亚军,刘鹏飞,时浩.考虑不完全信息的电力系统黑启 动方案评估方法[J].电力科学与技术学报,2020,35(6): 99-109.

LENG Yajun, LIU Pengfei, SHI Hao. Evaluation method of power system black start scheme considering incomplete information[J]. Journal of Electric Power Science and Technology,2020,35(6):99-109.

[31] 于群,霍筱东,何剑,等.基于斯皮尔曼相关系数和系统 惯量的中国电网停电事故趋势预测[J].中国电机工程 学报,2023,43(14):5372-5381.
YU Qun,HUO Xiaodong,HE Jian,et al.Trend prediction of power blackout accidents in Chinese power grid based on Spearman's correlation coefficient and system inertia [J].Proceedings of the CSEE,2023,43(14):5372-5381.

(上接第45页 Continued from page 45)

- [17] 曹锦,陆飞,江友华.基于改进粒子群算法的配电网多目标优化控制[J].电网与清洁能源,2022,38(5):95-103. CAO Jin,LU Fei,JIANG Youhua.Multi-objective optimal control of distribution networks based on improved particle swarm algorithm[J]. Power System and Clean Energy,2022,38(5):95-103.
- [18] 王渝红,查云峰,莫思特,等.一种嵌入制热材料的自制 热导线临界融冰研究[J].水电能源科学,2021,39(7): 175-178+93.
 WANG Yuhong, ZHA Yunfeng, MO Site, et al. Study on witigal ing making of a solf-mode hosting mine

critical ice melting of a self-made heating wire embedded with heating material[J]. Water Resources and Power,2021,39(7):175-178+93.

 [19] 党世轩,王岩,胡聪,等.110 kV输电线路巡检无人机电磁 兼容分析[J].电力科学与技术学报,2023,38(1):235-242.
 DANG Shixuan, WANG Yan, HU Cong, et al. Electromagnetic compatibility analysis of patrol UAV applied to 110 kV transmission line[J].Journal of Electric Power Science and Technology,2023,38(1):235-242.

[20] 陈远博,郑可迪,顾宇轩,等.考虑电化学模型的配电网 侧光储系统分布式优化调度[J].电力系统自动化,2024, 48(2):37-47.

CHEN Yuanbo, ZHENG Kedi, GU Yuxuan, et al. Distributed Optimal Dispatch for Photovoltaic-Battery Storage Systems of Distribution Networks Considering Electrochemical Model[J]. Automation of Electric Power Systems,2024,48(2):37-47.

[21] 袁肖雷,周羽生,王永安,等.基于电磁一热耦合场的输 电线路高频激励融冰分析与计算[J].电力系统保护与 控制,2019,47(3):103-109.

YUAN Xiaolei, ZHOU Yusheng, WANG Yongan, et al. Analysis and calculation of high-frequency excitation deicing for transmission lines based on electromagnetic and thermal coupling field[J]. Power System Protection and Control, 2019, 47(3):103-109.