引用格式:杨帅,曾文伟,杨凌云,等.基于GOA-SVM的光伏阵列故障诊断方法研究[J].电力科学与技术学报,2024,39(5):172-180. **Citation:** YANG Shuai, ZENG Wenwei, YANG Lingyun, et al. Research on fault diagnosis method for photovoltaic array based on GOA-SVM[J]. Journal of Electric Power Science and Technology,2024,39(5):172-180.

基于 GOA-SVM 的光伏阵列故障诊断方法研究

杨帅1,2,曾文伟1,2,杨凌云3,黄瑞1,2,刘谋海1,2,易钦逸4,高云鹏4

(1.国网湖南省电力有限公司供电服务中心,湖南长沙410004;2.智能电气量测与应用技术湖南省重点实验室,湖南长沙410004;3.国网湖南省电力有限公司,湖南长沙410004;4.湖南大学电气与信息工程学院,湖南长沙410082)

摘 要:光伏阵列输出功率随机性、波动性强。如果其发生故障,将严重影响电力系统安全与稳定。针对当前光伏 故障诊断的准确率低和收敛速度慢的难题,提出一种基于蝗虫算法一支持向量机(grasshopper optimization algorithm-support vector machine,GOA-SVM)模型的光伏阵列故障诊断方法。首先,建立光伏阵列等效电路模型,分析光伏阵列的伏安曲线变化特性;其次,考虑环境影响因素和光伏阵列规模非线性变化,提取反映不同故障特性的特征量,将数据映射到高维空间进行非线性处理;最后,提出蝗虫算法(grasshopper optimization algorithm,GOA) 优化非线性支持向量机改进方法,建立GOA-SVM光伏阵列故障诊断模型,并结合实例进行仿真。研究结果表明:该方法可应用于多种不同规模的光伏阵列模型,且均能实现对光伏阵列故障的有效诊断,其对4×3光伏阵列规模的数据仿真分类准确率可达99.8088%。采用美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)公开数据集进行验证,其故障诊断准确率达到92.3682%。与其他方法相比,该方法的召回率及F1-Score均有明显提升。

关 键 词:光伏阵列;故障诊断;多分类;最优超平面;GOA-SVM模型

DOI:10.19781/j.issn.1673-9140.2024.05.018 中图分类号:TM615 文章编号:1673-9140(2024)05-0172-09

Research on fault diagnosis method for photovoltaic array based on GOA-SVM

YANG Shuai^{1,2}, ZENG Wenwei^{1,2}, YANG Lingyun³, HUANG Rui^{1,2},

LIU Mouhai^{1,2}, YI Qinyi⁴, GAO Yunpeng⁴

(1. Power Supply Service Center, State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China; 2. Hunan Province Key Laboratory of Intelligent Electrical Measurement and Application Technology, Changsha 410004, China; 3. State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China; 4. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Abstract: The output power of photovoltaic (PV) arrays exhibits strong randomness and volatility. In the event of a fault, it can severely impact the safety and stable operation of the power system. Addressing the challenges of low accuracy and slow convergence in current PV fault diagnosis, this paper proposes a PV array fault diagnosis method based on the grasshopper optimization algorithm-support vector machine (GOA-SVM) model. Firstly, an equivalent circuit model of the PV array is established to analyze the variation characteristics of the PV array's voltage-current curve. Secondly, considering environmental factors and the nonlinear changes in the scale of the PV array, feature quantities reflecting different fault characteristics are extracted, and the data is mapped into a high-dimensional space for nonlinear processing. Finally, an improved method for optimizing the nonlinear support vector machine using GOA is proposed, and a GOA-SVM PV array fault diagnosis model is established, with simulations conducted using practical examples. The research results indicate that this method can be applied to various PV array models of different scales and effectively diagnose faults in PV arrays. For a 4×3 PV array scale, the data simulation classification accuracy can reach 99.8088%. When validated using the publicly available dataset from the national institute of standards and technology

通信作者:高云鹏(1978—),男,博士,教授,主要电力设备故障诊断、智能信息处理等方面的研究;E-mail:gaoyp@hnu.edu.cn

收稿日期:2023-10-21;修回日期:2023-12-11

基金项目:国家重点研发计划(2021YFF0602402)

(NIST), the fault diagnosis accuracy achieves 92.3682%. Compared with other methods, this approach demonstrates significant improvements in recall rate and F1-Score.

Key words: photovoltaic array; fault diagnosis; multi-classification; optimal hyperplane; GOA-SVM mode

光伏阵列是光伏发电系统的重要组成部分,由 于其长期工作在较为恶劣的环境中,极易引发阵列 的开路、短路及逆变器过流、过压、功率管开路等故 障,严重影响光伏系统的发电效率^[13]。为避免光伏 阵列故障导致严重事故,提升电力系统的发电效 率,国内外研究机构已展开光伏系统故障诊断技术 方面的研究。

近年来,许多学者陆续提出各种先进的光伏故 障诊断方法[4],其大致可分为物理检测法、功率差 值法、I-V曲线法、人工智能法等。文献[4]通过测 量光照辐射度和环境温度,估计光伏阵列的理论电 压、电流以与功率。如果理论功率和实际功率相差 超过15%,则判定阵列存在故障。但该法需设置 故障阈值,由于光伏阵列长期在户外运行,组件会 老化,故其设定的阈值也需定期更新。文献[5]通 过无人机拍摄光伏阵列的热成像图,判断热成像图 中是否存在显著的亮点来实现光伏阵列的故障诊 断,但该方法受天气和复杂环境的影响较大,且红 外热成像法需使用较为昂贵的设备,故其故障诊断 的精度欠佳,易受外界环境的影响。文献[6-7]通过 测量光伏阵列的 I-U曲线,从曲线中提取特征,来 训练模糊C均值聚类模型,通过训练好的模型来计 算待测试样本对各特征隶属度的大小,以实现故障 分类,但其数据获取难度较高。文献[8]提出了 基于图的半监督学习模型的光伏阵列故障诊断 方法,但该模型的输入处理难度较大。人工智能 法仅需电气测量数据,且诊断准确率高。其中,支 持向量机(supporting vector machine, SVM)模型用 于故障诊断,能获得较高准确率。文献[9]采用基 于多类 SVM 的光伏组件故障在线诊断方法,但 SVM算法的部分参数的设置对整体诊断精度影响 较大。有学者通过遗传算法(genetic algorithm, GA)^[10]、海鸥算法(seagull optimization algorithm, SOA)^[11-12]、人工蜂群算法(artificial bee colony algorithm, ABC)^[13-14]、粒子群算法(particle swarm optimization, PSO)^[15]、灰狼算法(grey wolf optimizer, GWO)^[16]、布谷鸟算法(cuckoo search, CS)^[17]等来 优化 SVM 的相关参数,提高其识别光伏阵列故障 类型的准确率,但部分改进算法仍存在收敛速度

慢、容易陷入局部最优等问题^[18-19]。

针对这些问题,本文提出一种基于蝗虫算法一 支持向量机 (grasshopper optimization algorithmsupport vector machine, GOA-SVM)模型的光伏阵 列故障诊断方法。先通过建立3种不同规模的光伏 阵列等效电路模型,考虑不同程度的短路和开路的 光伏阵列故障,分析光伏阵列的伏安曲线变化特 性;再考虑环境影响因素和光伏阵列规模非线性变 化,构建反映不同故障特性的特征量,并将其映射 到高维空间中,将其作为光伏阵列故障诊断方法的 输入向量;然后,引入蝗虫优化算法(grasshopper optimization algorithm, GOA), 优化非线性SVM,构 建基于GOA-SVM的光伏阵列故障诊断模型,解决 传统故障诊断方法实现复杂、收敛速度慢的问题: 最后,并采用仿真数据进行算例分析,对3种不同规 模的光伏阵列模型进行分析,并使用美国国家标准 与技术研究院(National Institute of Standards and Technology,NIST)公开数据集进行验证,将所提方 法与传统算法进行对比,验证了所提方法的准确性 和有效性。

1 光伏阵列故障分析

对光伏阵列中常见的短路、开路这两类故障, 本文考虑3×4的光伏阵列,分析其在这两种故障类 型下光伏阵列伏安特性曲线的变化情况,并基于伏 安特性曲线选取故障诊断的特征量。通过仿真,得 到不同工作状态下光伏阵列的*I-U*曲线和*P-U*曲 线,结果分别如图1、2所示。

图1 正常状态与不同故障状态下的I-U曲线 Figure 1 I-U curves under normal condition and various fault conditions

1) 短路故障。

从图 1、2 中可以看出,当光伏阵列发生短路故障时,短路电流 Isc 变化不大,开路电压 Uoc 变化很大,且其最大功率点的变化最为显著,因此,选取最大功率点电流 Im、电压 Um和开路电压 Uoc 作为其故障特征。

2) 开路故障。

当光伏阵列发生开路故障时,短路电流 *I*sc变化 很大,开路电压 *U*oc变化不大,且最大功率点的变化 显著,因此,选取最大功率点电流 *I*m、电压 *U*m和短路 电流 *I*sc作为其故障特征。

从图1、2还可以看出,相较于正常运行状态,当 发生短路故障时,光伏阵列的开路电压明显减小; 当发生开路故障时,短路电流明显减小。仿真试验 过程中收集到的典型样本数据见表1。

			1	5
状态类别	行数	列数	$U_{ m mpp}/{ m V}$	$I_{\rm mpp}/{ m A}$
正常	9	10	385.22	58.98
	4	3	174.77	15.91
	1	1	42.80	5.84
开路	9	10	373.95	58.86
	4	3	171.02	10.63
	1	1	25.53	0.017
短路	9	10	385.22	53.08
	4	3	135.75	15.95
	1	1	15.38	3.10

表1 光伏阵列仿真样本 Table 1 Simulation sample of PV array

综上所述,当光伏阵列出现开路、短路故障时, 其开路电压、短路电流、最大功率点和最大功率点 的电压与电流中至少一种参数会发生明显变化。 通过分析3种不同规模的光伏阵列,模型可具有更 好的泛化性。因此,本文选择这些参数作为模型的 输入特征。

2 基于 GOA-SVM 光伏阵列故障诊断

2.1 GOA优化 SVM 模型

SVM分析数据的监督式学习模型与相关的二 分类模型学习算法是识别光伏阵列故障的主要方 法。该方法是结构风险最小化的近似实现,SVM能 较好地解决小样本、非线性分类以及高维模式识别 等问题,具有计算简单、鲁棒性好和泛化性能佳等优 点。因此,SVM被广泛应用于回归预测、分类识别、 模式识别、函数估计等领域。

在光伏阵列故障识别过程中,假设光伏阵列样 本的训练集为 $\{(x_i, y_i), i=1, 2, \cdots, n\}, x_i \in \mathbb{R}^n, y \in \{1, \dots, n\}$ 2,3 ,x 为光伏阵列特征输入向量,包括光伏阵列的 行数和列数、光照强度、温度、最大功率点电压和电 流等特征分量,y为类型标签,其分为正常状态、短 路故障、开路故障3种状态。设存在分类平面 $d(x) = \omega x + b = 0, \omega \in \mathbb{R}^n$ 为权重向量, b \in R 为偏 置,该分类平面能将所有光伏阵列状态进行准确分 类,且使分类间隔最大化,则定义分类平面d(x) = $\omega x + b = 0$ 为最优分类超平面,定义两类样本中距 离该分类线最近的向量,目平行于最优分类面的样 本为支持向量。二分类支持向量机的原理图如图3 所示。在图3中,H为最优超平面,D₁和D₂为两类不 同的样本。在样本空间或者特征空间内构造最优 超平面,最大分离这两类样本。为保证模型的泛化 能力最大,应使得平面与样本集之间距离最大。

求取分类间隔为最大值的问题等价于求取||ω|| 的最小值问题,即当||ω||最小时,该最优超平面(在二 维空间中为直线)能正确地将两类样本分开,且两 类样本之间的间隙最大,故求解最优分类线的问题 可转化为优化问题,即

$$\begin{cases} \min_{\boldsymbol{\omega}, b} \frac{1}{2} \|\boldsymbol{\omega}\|^2 = \min_{\substack{a, b \\ \boldsymbol{\omega}, b}} \frac{1}{2} \|\boldsymbol{\omega}\|^2 = \min_{\substack{a, b \\ \boldsymbol{\omega}, b}} (1) \\ \text{s.t. } y_i(\boldsymbol{\omega} \boldsymbol{x}_i + b) \ge 1 \end{cases}$$

式中, $i=1, 2, \cdots, n_{\circ}$

考在实际光伏阵列中,温度和光照强度的影响 很大,很多光伏阵列数据样本是线性不可分的。因此,引入Lagrang乘子α_i与惩罚因子C,将式(1)转化 为对偶优化问题,即

$$\begin{cases} \max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \alpha_{i} y_{i} y_{j} (\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}) \\ \text{s.t.} \begin{cases} \sum_{i=1}^{n} y_{i} \alpha_{i} = 0 \\ 0 \leqslant \alpha_{i} \leqslant C, i = 1, 2, \cdots, n \end{cases}$$
(2)

式中,y_i为第*i*个训练样本的类别标签,表示样本的分类。

通过非线性变换将(2)转化为某个维特征空间 中的线性分类问题,即在高维特征空间中学习线性 支持向量机,用核函数*K*(*x*,*x_i*)替换式(2)中的内 积,求解得到的解即为非线性支持向量机,即

Γ.

$$f(x) = \operatorname{sgn}[(\boldsymbol{\omega} \cdot \boldsymbol{x}) + b] = \operatorname{sgn}\left[\sum_{i=1}^{n} y_{i} \alpha_{i} K(\boldsymbol{x} \cdot \boldsymbol{x}_{i}) + b\right]$$
(3)

由此可知,SVM在解决光伏阵列故障诊断问题 时会极易受核函数与惩罚因子参数的影响,本文用 GOA对其参数进行寻优。

GOA 是由 Saremi 等^[20]提出的一种新型的全局优化元启发式算法。该算法受成年与幼年蝗虫的大规模移动与觅食的聚集行为启发,具有收敛速度快、搜寻效率高和操作参数少等特点。该算法通过模拟自然界中蝗虫种群行为来解决优化问题,能很好地平衡全局和局部搜索过程,寻优精度好。

在 GOA-SVM 的过程中, 蝗虫群位置即为 SVM中的C和g, 其更新计算式为

$$X_{i}^{d} = \beta \left[\sum_{j=1, j \neq i}^{N} \beta \frac{u_{d} - l_{d}}{2} s\left(\left| x_{i}^{d} - x_{j}^{d} \right| \right) \frac{x_{i} - x_{j}}{d_{ij}} \right] + T_{d}$$

$$\tag{4}$$

式中,X^{*a*}为多维空间中第*i*个数据点在维度*d*上的 位置;*d*为2;蝗虫群位置为SVM中惩罚因子*C*和核 函数参数*g*的取值;*i*和*j*分别为蝗虫个体编号,每个 编号代表一个蝗虫在多维空间中的位置;*u*_a和*l*_a分 别为变量的上界和下界,本文设置其分别为1000 和0.001;*T*_a为最优蝗虫的位置,即最优的惩罚因子 和最优核函数参数g的组合;d_{ij}为两只蝗虫间的欧 式距离;β为控制参数,用于平衡算法的全局探索和 局部开发;函数s为蝗虫个体间的相互作用力。

控制参数β的表达式为

$$\beta = \beta_{\max} - t \frac{\beta_{\max} - \beta_{\min}}{T_{\max}} \tag{5}$$

式中, β_{max} 与 β_{min} 分别表示递减区间的最大值与最小值;t表示当前的迭代次数; T_{max} 表示最大迭代次数。

则蝗虫个体间的相互作用力s(r)为

$$s(r) = f e^{-r/l} - e^{-r}$$
 (6)

式中,r为蝗虫个体在种群中的影响力因子;f、l分别为吸引强度参数与吸引尺度参数,本文中分别将其设置为0.5和1.5。

本模型选择适应度函数为测试集准确率 f_{fitness} , 其计算式为

$$f_{\rm fitness} = \frac{N_{\rm test, right}}{N_{\rm test, total}} \tag{7}$$

式中,N_{test,right}为光伏阵列数据样本测试集正确诊断 个数;N_{test,total}为光伏阵列数据样本测试集总数。

2.2 基于GOA-SVM的光伏阵列故障诊断流程

基于 GOA-SVM 的光伏阵列故障诊断方法的 流程如图 4 所示。该算法的具体步骤如下。

1)输入光伏阵列样本数据及其对应的标签数据,并设置训练集和测试集;

2) 初始化 GOA 参数,即种群规模 N、最大迭代 次数 T_{max} 、参数 β_{max} 和 β_{min} 、SVM 参数 C 和 g 的取值 范围;

3) 初始化蝗虫群位置,每只蝗虫的位置都由对 应的(*C*,*g*)组成;

4)利用 SVM 对训练集进行训练,根据式(7)计 算出每只蝗虫所对应的适应度值;

图 4 GOA-SVM 流程 Figure 4 Flowchart of GOA-SVM

5)根据每只蝗虫的适应度值大小进行排序,得 到当前最优蝗虫位置;

6)根据式(4)~(7)对蝗虫的适应度值和最优 位置,不断进行更新计算和重新排序,并检查是否 越界;

7)当种群迭代次数达到最大迭代次数时,输出 蝗虫的最优位置所对应的C和g参数的最优解,否 则跳转至步骤6;

8)利用最优参数建立光伏阵列故障诊断模型, 并对样本进行故障诊断。

3 实验验证

3.1 光伏阵列仿真模型

模型输入特征的选择决定能否迅速、精准地对 光伏阵列故障类型进行判断。因此,输入特征须直 接体现出光伏阵列故障机理特征,易于算法实现。

本文共设置3种不同的光伏阵列工作状态,即 正常状态、组件开路故障状态、组件短路故障状态。 开路故障通过断开故障光伏阵列与其相邻光伏阵 列的导线来模拟;短路故障通过将故障光伏阵列的 正负极短接来模拟。本文使用MATLAB数值仿真 软件分别搭建1×1、4×3、9×10的串并联光伏阵 列。其中,4×3的光伏阵列仿真如图5所示,9×10 的光伏阵列仿真如图6所示。

图5 4×3的光伏阵列仿真

 t'	1	•		t	1	t
a a b b						
开路						
 • -			 -			

图6 9×10的光伏阵列仿真

Figure 6 Simulation diagram of a 9×10 photovoltaic array

3.2 仿真验证

对4×3光伏阵列规模进行分析,搭建串、并联 光伏阵列,得到8716组数据。其中,包含故障状态 的样本数为6829组,正常状态数据1887组。在故 障状态数据中,开路故障状态数据2133组,短路故 障数据4696组。将样本数据以7:3的比例随机划 分为训练集和测试集。影响SVM模型故障诊断精 度的参数分别为惩罚因子C和核函数g,将未进行 优化的SVM模型中惩罚因子C和核函数g分别设 置为1.00和0.59,经诊断后该模型正确诊断样本 2392组,准确率仅为91.4723%。其中,SVM模型 的故障诊断结果和混淆矩阵分别如图7、8所示。

图7 未优化的SVM故障诊断

图8 未优化的SVM混淆矩阵

从图 7、8可看出,未优化的 SVM 模型在光伏阵 列故障诊断方面的效果欠佳,对数据的分类效果一 般,有待进一步优化。使用 GOA 算法对 SVM 模型 中的惩罚因子 C 和核函数 g 进行参数优化。GOA 初始化参数设置为:种群数量为 20,最大迭代次数 为 20,交叉验证折数为 5,惩罚因子 C 的优化范围为 [1×10⁻⁵,1000],核函数 g 的优化范围为[1×10⁻⁵, 1000]。经过迭代计算后,多种优化算法适应度曲 线对比图、GOA-SVM 模型的故障诊断结果与混淆 矩阵分别如图 9~11 所示。

图11 GOA优化SVM混淆矩阵

从图9可看出,GWO-SVM算法迭代到第11次 达到收敛,PSO-SVM算法和ABC-SVM算法迭代 到第12次达到收敛,SOA-SVM算法迭代到第14次 达到收敛,而GOA迭代到第7次时就开始收敛,收 敛速度最快。此时GOA最佳适应度为99.8088,惩 罚因子C为1000,核函数g为2.498。从图10、11可 看出,GAO-SVM模型对测试集的故障诊断准确率 为99.8088%。

从光伏阵列故障诊断准确率分析, GOA 对

SVM模型参数优化使得准确率得到较大提升,相比 于未优化的SVM模型提高了8.3365%。该仿真结 果表明:在光伏阵列故障诊断时,GOA-SVM模型 比未优化的SVM模型更可靠。

为验证所提 GOA-SVM 模型能够准确地诊断 光伏阵列的故障,通过对比分析 SVM、KNN等机 器学习模型,以及基于灰狼优化 SVM 模型和基于 粒子群算法优化 SVM 模型,采用相同训练集和测 试集进行实验,SVM 模型、GWO-SVM 模型、 PSO-SVM 模型和 GOA-SVM 等模型的故障诊断 结果见表 2 和如图 12 所示。在表 2 中,除之前提及 算法外,还采用了 k 邻近算法(k-nearest neighbor, kNN)、梯度提升决策树(gradient boosting decision tree,GBDT)等算法。

表2 不同算法故障诊断结果

Table 2 Fault diagnosis results of diagnosis	fferent algorithms
--	--------------------

算法	误诊数	准确率/%	
分类树	72	97.247 2	
KNN	550	78.967 2	
决策树	173	93.449 7	
随机森林	158	93.944 1	
GBDT	65	97.492 5	
SVM	257	91.472 7	
朴素贝叶斯	195	92.533 8	
SOA-SVM	66	97.463 2	
ABC-SVM	51	98.043 1	
GWO-SVM	48	98.131 6	
PSO-SVM	53	97.952 2	
GOA-SVM	3	99.808 8	

图12 算法效果比较

Figure 12 Effects comparison of various algorithms

分析表 2 和图 12 可知, 在分类树、KNN、决策 树、随机森林、GBDT、SVM、朴素贝叶斯机器学习 模型, GBDT准确率最高,为97.4925%,在SVM其 他优化算法中,SOA、ABC、GWO、PSO优化SVM 模型准确率分别为97.463 2%、98.043 1%、 98.131 6%、97.952 2%, 而本文提出的GOA-SVM 算法准确率可达99.808 8%, 诊断结果明显优于其 他算法。对3种不同光伏阵列规模的仿真数据进行 分析,其中1×1光伏阵列有5 100组数据,包含正常 状态数据1700组,开路状态数据1700组,短路数 据1700组;其中10×9光伏阵列有324组数据,包 含正常状态数据108组,开路状态数据108组,短路 数据108组;将样本数据以7:3的比例随机划分训 练集和测试集,结果见表3。

表3 不同光伏阵列规模故障诊断结果 **Table 3** Fault diagnosis results of different PV array sizes

阵列规模	测试数据 个数	准确率/ %	精确率/ %	召回率/ %	F1
9×10	97	0.992 3	0.978 1	0.964 0	0.971 0
4×3	2 615	0.998 1	0.998 3	0.997 2	0.997 7
1×1	1 530	1.000 0	1.000 0	1.000 0	1.000 0

由表3可知,GOA-SVM算法对3种不同光伏 阵列规模进行故障诊断时,准确率高、鲁棒性强, 其中4×3的光伏阵列准确率为99.81%,F1值为 99.77%;1×1的光伏阵列准确率为100%,F1值为 100%;9×10的光伏阵列准确率为99.23%,F1值为 97.10%。

3.3 实验验证

为了进一步验证本文方法的准确性和有效性, 将提出方法针对NIST公开数据集进行分析,共取 564 522条数据,数据特征包括:光照强度、温度、直 流电压、直流电流、直流功率、交流功率,数据标签 包括:正常、短路和开路。将样本数据以7:3的比例 随机划分训练集和测试集。将本文所提算法应用 在该公开数据集上,其适应度曲线、故障诊断结果 及混淆矩阵分别如图13~15所示。

从图 13 可看出,GWO-SVM 算法迭代到第 12 次达到收敛,PSO-SVM 算法迭代到第 13 次达到收 敛,而 GOA 迭代到第 10 次时开始收敛,收敛速度最 快。此时 GOA 最佳适应度为 92.368 2,惩罚因子 C 为 1 000 和核函数 g 为 77.510 7。从图 14、15 中可看 出,GOA 优化 SVM 模型对测试集的故障诊断准确 率为 92.368 2%。

图13 多种优化算法适应度曲线对比

图14 GOA优化SVM故障诊断

Figure 14 SVM fault diagnosis optimized by GOA

图 15 GOA优化 SVM 混淆矩阵 Figure 15 SVM confusion matrix optimized by GOA

对比分析 SVM、KNN 等机器学习模型,基于 GWO 优化的 SVM 模型和基于 PSO 优化的 SVM 模型,采用相同训练集和测试集进行实验,SVM 模 型、GWO-SVM 模型、PSO-SVM 模型和本文 GOA-SVM 等模型的故障诊断结果如表4和图 16 所示。

由表4和图16可知,在分类树、KNN、决策树、 随机森林、GBDT、SVM、朴素贝叶斯机器学习模型 中,分类树准确率最高,为89.3744%。在SVM的 优化算中,SOA、ABC、GWO、PSO优化SVM模型 准确率分别为90.1132%、90.4692%、90.8951%、 90.2658%,而本文的GOA-SVM准确率能达到 92.3682%,由此可知,本文提出算法应用于实际工 况时更优于现有其他算法的。

表4 不同算法故障诊断结果 Table 4 Fault diagnosis results of different algorithms

算法	误诊数	准确率/%
分类树	17 995	89.374 4
KNN	33 048	80.486 3
决策树	28 680	83.065 2
随机森林	25 427	84.986 1
GBDT	21 197	87.483 5
SVM	21 316	87.413 7
朴素贝叶斯	27 861	83.548 6
SOA-SVM	16 744	90.113 2
ABC-SVM	16 140	90.469 2
GWO-SVM	15 419	90.895 1
PSO-SVM	16 485	90.265 8
GOA-SVM	12 924	92.368 2

Figure 16 Comparison of algorithm performance on public data

4 结语

本文提出了一种基于GOA-SVM算法的光伏 阵列故障诊断方法,该方法可有效光伏阵列辨识短 路、断路故障状态。仿真与实验结果均表明:对正常 工作、短路和断路3种状态,本文提出的GOA-SVM 算法的仿真数据故障诊断准确率达到99.8088%; 使用NIST公开数据集进行验证,其故障诊断准确 率达到92.3682%,且只需用较少迭代次数即可达 到全局最优解,收敛速度优势明显。本文提出方法 针对不同规模的光伏阵列准确率高、鲁棒性强,在 同等样本规模条件下该算法具有较高的准确率及 更快的收敛性,可有效实现对光伏阵列的故障诊断 与判别分析。

参考文献:

- [1] 张长庚.考虑含光伏接入的配电网故障特性研究[J].电 网与清洁能源,2022,38(12):138-146.
 ZHANG Changgeng.Research on fault characteristics of the distribution network considering access of photovoltaic[J].Power System and Clean Energy,2022,38 (12):138-146.
- [2] 陆江,袁廷璧,彭咏龙,等.基于统计推断的异常光伏组 件识别方法[J].智慧电力,2023,51(11):38-44.

LU Jiang, YUAN Tingbi, PENG Yonglong, et al. Anomalous photovoltaic module identification method based on statistical inference[J]. Smart Power, 2023, 51 (11):38-44.

LI Jingge, RONG Na, CHEN Qingchao. A data augmentation method for distributed photovoltaic electricity theft using generative adversarial network[J]. Journal of Electric Power Science and Technology,2022, 37(5):181-190.

- [4] 艾上美,周剑峰,张必朝,等.基于改进SSD算法的光伏 组件缺陷检测研究[J].智慧电力,2023,51(12):53-58.
 AI Shangmei, ZHOU Jianfeng, ZHANG Bichao, et al. Defect detection of photovoltaic modules based on improved SSD algorithm[J]. Smart Power, 2023, 51(12): 53-58.
- [5] 陈宇航,闫腾飞,谢添,等.基于功率损失和 U-I特性综合 考虑的光伏组件故障诊断方法[J].电机与控制应用, 2016,43(11):92-97.

CHEN Yuhang, YAN Tengfei, XIE Tian, et al. A novel fault diagnosis method of photo voltaic module based on power loss and U-I characteristics[J]. Electric Machines & Control Application,2016,43(11):92-97.

- [6] 毕锐,丁明,徐志成,等.基于模糊C均值聚类的光伏阵列故障诊断方法[J].太阳能学报,2016,37(3):730-736.
 BI Rui, DING Ming, XU Zhicheng, et al. PV array fault diagnosis based on FCM[J].Acta Energiae Solaris Sinica, 2016,37(3):730-736.
- [7] 何廷一,李胜男,陈亦平,等.基于最优光伏阵列重构的
 电网调频策略研究[J].电力系统保护与控制,2022,50
 (1):124-132.

HE Tingyi,LI Shengnan,CHEN Yiping,et al.Optimal PV array reconfiguration-based power grid frequency

regulation strategy[J]. Power System Protection and Control,2022,50(1):124-132.

- [8] ZHAO Y, BALL R, MOSESIAN J, et al. Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2848-2858.
- [9] WANG L X,LIU J,GUO X G,et al.Online fault diagnosis of photovoltaic modules based on multi-class support vector machine[C]//2017 Chinese Automation Congress (CAC).Jinan,China.IEEE,2017:4569-4574.
- [10] 郭浩然,李泽滔.遗传算法优化支持向量机的光伏阵列 故障诊断研究[J].智能计算机与应用,2019,9(5):58-62.
 GUO Haoran, LI Zetao. Research on fault diagnosis of photovoltaic array based on Support Vector Machine optimized by Genetic Algorithm[J].Intelligent Computer and Applications,2019,9(5):58-62.
- [11] 孙培胜,陈堂贤,程陈,等.基于 SOA-SVM 模型的光伏阵 列 故 障 诊 断 研 究 [J/OL]. 电 源 学报:1-13[2023-10-14]. http://kns. cnki. net/kcms/detail/12.1420. TM. 20220823. 1109.002.html.

SUN Peisheng, CHEN Tangxian, CHENG Chen et al. Research on fault diagnosis of photovoltaic array based on soa-svm model [J/OL].Journal of Power Sources:1-13 [2023-10-14]. http://kns. cnki. net/kcms/detail/12.1420. TM.20220823.1109.002.html.

[12] 顾崇寅,徐潇源,王梦圆,等.基于CatBoost算法的光伏 阵列故障诊断方法[J].电力系统自动化,2023,47(2): 105-114.

GU Chongyin, XU Xiaoyuan, WANG Mengyuan, et al. CatBoost algorithm based fault diagnosis method for photovoltaic arrays[J]. Automation of Electric Power Systems,2023,47(2):105-114.

- [13] 刘开石,李田泽,刘东,等.基于ABC-SVM算法的光伏阵 列故障诊断[J].电源技术,2021,45(9):1171-1174.
 LIU Kaishi,LI Tianze,LIU Dong, et al.Fault diagnosis of PV array based on ABC-SVM algorithm[J]. Chinese Journal of Power Sources,2021,45(9):1171-1174.
- [14] 董广凯,黄嵩,董佳林,等.定功率跟踪控制的光伏并网

低电压穿越策略[J].高压电器,2023,59(3):93-98+107. DONG Guangkai,HUANG Song,DONG Jialin,et al.Low voltage ride-through strategy of grid-connected photovoltaic generation with constant power tracking control[J]. High Voltage Apparatus, 2023, 59(3): 93-98+ 107.

[15] 林培杰,陈志聪,吴丽君,等.一种 PSO-SVM 的光伏阵列 故障检测与分类[J].福州大学学报(自然科学版),2017, 45(5):652-658.

LIN Peijie, CHEN Zhicong, WU Lijun, et al. Fault detection and classification for photovoltaic arrays based on PSO-SVM[J]. Journal of Fuzhou University (Natural Science Edition),2017,45(5):652-658.

- [16] 程陈,陈堂贤,孙培胜,等.基于灰狼算法的光伏组件故 障诊断模型优化[J].电源技术,2022,46(6):684-687.
 CHENG Chen, CHEN Tangxian, SUN Peisheng, et al.
 Optimization of fault diagnosis model for photovoltaic module based on gray wolf algorithm[J].Chinese Journal of Power Sources,2022,46(6):684-687.
- [17] 张杰,易辉,张霞,等.基于布谷鸟算法的光伏组件故障 诊断模型优化[J].电源技术,2020,44(1):76-79.
 ZHANG Jie, YI Hui, ZHANG Xia, et al. Optimization of fault diagnosis model for photovoltaic module based on cuckoo algorithm[J]. Chinese Journal of Power Sources, 2020,44(1):76-79.
- [18] 蔡正梓,程海兴,陈茜,等.基于 PSO-SVM 的变电站视频 监控火灾识别算法[J].自动化与仪表,2022,37(7):58-62+67.

CAI Zhengzi, CHENG Haixing, CHEN Qian, et al. Substation video surveillance fire recognition algorithm based on PSO-SVM[J]. Automation & Instrumentation, 2022,37(7):58-62+67.

- [19] WANG J J, GAO D D, ZHU S K, et al. Fault diagnosis method of photovoltaic array based on support vector machine[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2):5380-5395.
- [20] SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: theory and application[J]. Advances in Engineering Software,2017,105:30-47.