2025年3月

引用格式:王智博,田野,朱义东.新型旁路型MMC子模块及其直流故障穿越策略[J].电力科学与技术学报,2025,40(2):255-264. Citation: WANG Zhibo, TIAN Ye, ZHU Yidong. New bypass MMC sub-module and its DC fault ride-through strategy[J]. Journal of Electric Power Science and Technology, 2025, 40(2): 255-264.

新型旁路型MMC子模块及其直流故障穿越策略

王智博,田 野,朱义东

(国网辽宁省电力有限公司电力科学研究院,辽宁 沈阳 110006)

摘 要:基于传统半桥子模块(half bridge sub-module, HBSM)的模块化多电平换流器(modular multilevel converter, MMC)无法阻断直流侧短路故障电流,该故障电流降低了 MMC 高压直流输电系统(MMC based high voltage direct current, MMC-HVDC)的可靠性。以2个HBSM 为基本结构,研究设计一种能够有效阻断直流故障电流 的新型旁路型子模块,即二极管钳位型双半桥子模块(diode clamp dual half bridge sub-module, DCDHBSM)。相较于 具备直流短路电流阻断能力的其他子模块,所提DCDHBSM所需功率器件较少,运行损耗较低。此外,还设计适用 于 DCDHBSM 的直流故障穿越策略,利用排序算法均衡了故障后的子模块电容电压。MATLAB/Simulink 和物理 仿真试验结果均证明了装配所提 DCDHBSM 的 MMC 在快速阻断直流故障电流及实现故障穿越等方面的有效性。 关键 词:模块化多电平换流器;直流极间短路;子模块拓扑;故障穿越策略;经济性分析

中图分类号:TM46 文章编号:1673-9140(2025)02-0255-10 **DOI:**10.19781/j.issn.1673-9140.2025.02.027

New bypass MMC sub-module and its DC fault ride-through strategy

WANG Zhibo, TIAN Ye, ZHU Yidong

(Electric Power Research Institute, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110006, China)

Abstract: The DC short-circuit fault current cannot be blocked by the modular multilevel converter (MMC) with traditional half-bridge sub-module (HBSM), which reduces the reliability of MMC based high voltage direct current (MMC-HVDC) systems. In this paper, based on two HBSM systems, a new bypass sub-module named diode clamp dual-half-bridge sub-module (DCDHBSM) with DC fault current blocking capability is proposed. Compared with other sub-modules possessing DC short-circuit current blocking capability, the proposed DCDHBSM requires fewer power devices and has lower operation loss. Moreover, a DC fault ride-through strategy suitable for DCDHBSM is designed, and sorting algorithm is utilized to balance the post-fault capacitor voltages of the sub-module. The results of simulation based on MATLAB/Simulink and physical experiment show that MMC assembled with the proposed DCDHBSM can quickly block DC fault current and realize fault ride-through.

Key words: modular multilevel converter; DC pole-to-pole short-circuit fault; sub-module topology; fault ride-through strategy; economic analysis

得益于故障处理能力强、谐波水平低等诸多优 势,模块化多电平换流器(modular multilevel converter,MMC)已经成为柔性直流输电工程中的主流 换流器拓扑^[1-4],其在舟山±200 kV五端柔性直流输 电示范工程、昆柳龙±800 kV 混合多端直流输电与 张北±500 kV 四端直流电网等工程中均取得了良 好的运行效果^[5-9]。考虑到长距离电能传输过程中 架空线出现短路故障的可能性较大,在直流断路器 技术不成熟且造价高的背景下,MMC须具备直流 故障隔离与故障穿越能力。

目前,直流侧短路故障主要通过采用交流断路 器、直流断路器和具备故障电流阻断能力的子模块 来阻断直流短路电流[10-12]。其中,采用具备故障电 流阻断能力的子模块的方案无需机械设备动作、可 靠性高、经济性好且恢复速度快,是解决直流短路 故障问题的优选方案^[13-14]。

基金项目:国网辽宁省电力有限公司科技项目(2023YF-100)

收稿日期:2023-12-25;修回日期:2024-06-21

通信作者:王智博(1994—),男,硕士,助理工程师,主要从事柔性输配电技术等方面的研究;E-mail:wangzhibo_LNDKY@163.com

典型的具备故障电流阻断能力的子模块包括 全桥子模块(full bridge sub-module, FBSM)和钳位 双子模块(clamp double sub-module, CDSM)^[15]。 FBSM包含4个带反并联续流二极管的绝缘栅双极 型晶体管(insulated gate bipolar transistor, IGBT), 开关器件数量是半桥子模块(half bridge sub-module, HBSM)的2倍,器件成本较高;CDSM由2个 HBSM、2个钳位二极管以及一个带反并联二极管的 构成,其单位电平对应的开关器件数量相比FBSM 有所降低。此外,文献[16-17]为了保证闭锁时2个 电容之间的串联关系,提出了一种串联双子模块 (series connected double sub-module, SCDSM)。文 献[18]提出了一种自阻型子模块,该子模块相比 HBSM增加了一个带反并联二极管的IGBT。在保 证直流故障电流阻断能力的前提下,文献[19]通过 对2个FBSM进行移位组合,设计出了具有自均压 能力的移位全桥子模块。文献[20-21]将双向开关引 入子模块拓扑,为减少器件数量提供了新的思路。

现有具备故障电流阻断能力的子模块拓扑可 以根据故障闭锁后模块中电容接入方式分为串联 型、并联型和旁路型3类^[22-23]。闭锁后所有电容串 联接入故障回路的子模块属于串联型拓扑,如 FBSM和串联双子模块SCDSM;闭锁后模块内电 容并联接入故障回路的子模块属于并联型拓扑,如 钳位双子模块CDSM;闭锁后模块内部分电容被旁 路的子模块属于旁路型拓扑,如二极管钳位子模块 (diode clamp sub-module,DCSM)^[24]、增强混合型子 模块(enhanced hybrid sub-module,EHSM)^[25]和半全 混合子模块(half bridge-full bridge hybrid sub-module, HB-FBSM)^[26]。

在这3类子模块拓扑中,一般而言,串联型拓扑所 需开关器件数量较多,器件成本较高;由于故障后子 模块中的电容处于并联状态,并联型拓扑的故障电流 阻断速度较慢;但旁路型拓扑与串联型拓扑相比所需 开关器件数量较少,与并联型拓扑相比,其具有更 快的故障电流阻断速度。因此,旁路型拓扑兼具经济 性与快速性,是一类较为优良的故障限流子模块^[27]。

本文首先提出一种旁路型子模块新拓扑,即二极管钳位型双半桥子模块(diode clamp dual half bridge sub-module, DCDHBSM),明确并划分其运 行工况;其次,对DCDHBSM的故障电流阻断机理 进行分析,针对故障闭锁后存在的电容电压不均衡 问题提出电容电压均衡方法,并设计换流器的直流 故障穿越策略;再次,从器件成本和运行损耗两方 面,对比分析 DCDHBSM 与其他典型故障限流子模块的经济性;最后,基于 MATLAB/Simulink 数值软件与物理试验平台对所提 DCDHBSM 及其直流故障穿越策略的有效性进行验证。

1 二极管钳位型双半桥子模块

1.1 拓扑结构

以MMC的相单元为例,图1给出了本文所提 二极管钳位型双半桥子模块 DCDHBSM 的拓扑演 化过程。在图1中,T₁₁、T₁₂、T₂₁、T₂₂、T₀代表IGBT, D₁₁、D₁₂、D₂₁、D₂₂、D₀代表二极管, L₀为桥臂电感, HBSM₁、HBSM₂、···、HBSMN代表桥臂中的N个半 桥子模块, DCDHBSM1、…、DCDHBSMN/2代表桥 臂内的N/2个二极管钳位型双半桥子模块,*i*_{sm}为子 模块电流,C1和C2分别为第1和第2个子模块的电 容。由图1(a)可知,相单元包含上、下两个桥臂,每 个桥臂由 N个 HBSM 串联电感 L₀构成。用带反并 联二极管的 IGBT 连接 HBSM, 的负输出端口和 HBSM。的正输出端口,用二极管连接电容C1的正 极和电容C。的负极,具体连接方式如图1(b)所示, 即得到DCDHBSM。在正常状态下,T。的触发信号 始终为1,其与D。配合使得电流能够双向流通,此时 1个DCDHBSM的功能与2个HBSM完全相同:直 流短路故障发生后,触发信号闭锁,故障电流因To 和D₀已无法流通D₂₂和D₁₂,D₁将电容C₁反电势引入 故障回路,使DCDHBSM获得了HBSM所不具备 的故障电流阻断能力。

1.2 工作模式

在正常状态下,1个DCDHBSM相当于2个串联的HBSM,通过控制开关器件的通断,子模块输出电压 u_{sm}可能为U_{cl}、U_{c2}、U_{c1}+U_{c2}或0V;在闭锁状态下,根据流经子模块的电流 i_{sm}(等效为桥臂电流)的方向,DCDHBSM 的输出电压可能为U_{c1}+U_{c2}或-U_{c1}。表1给出了DCDHBSM的工作模式。在表1中,0或1代表IGBT的触发信号的无或有。DCDHBSM在 正常和闭锁状态下的电流通路分别如图2、3所示。

表1 DCDHBSM的工作模式 Table 1 Working modes of DCDHBSM

工况	T ₁₁	T_{12}	T_{21}	T_{22}	T_0	$i_{\rm sm}/{\rm A}$	$u_{\rm sm}/{ m V}$
	1	0	1	0	1		$U_{\rm c1} + U_{\rm c2}$
	1	0	0	1	1		$U_{\rm c1}$
正常	0	1	1	0	1		$U_{\rm c2}$
	0	1	0	1	1		0
问出	0	0	0	0	0	>0	$U_{\rm c1} + U_{\rm c2}$
四钡	0	0	0	0	0	< 0	$-U_{\rm c1}$

normal states

2 直流故障穿越策略

2.1 故障电流阻断机理

在含故障限流子模块的 MMC 直流侧发生短路 故障后,故障电流的变化过程可以分为电容放电 (电感充电)、电容充电(电感续流)和电流阻断 3 个 阶段^[22-23]。电容放电阶段是从故障发生到子模块闭 锁,电容充电阶段是从子模块闭锁到每相单元均有 一个桥臂关断,之后故障电流被清除的过程即为电 流阻断阶段。由于交流侧注入能量较少,电容放电 阶段和电容充电阶段可忽略交流馈流通路。基于 DCDHBSM 的 MMC 在电容放电和电容充电阶段 的故障电流通路如图 4 所示。在图 4 中,每个子模 块电容 C₁和 C₂的容值均为 C₀, R_{dc}和 L_{dc}为直流线路 阻感, R_f为双极短路电阻。

直流短路故障发生瞬间,子模块电容向故障点 释放储存的电能,故障电流迅速增大;闭锁子模块 后,DCDHBSM的一个电容反向接入故障回路,故 障电流因对该电容充电而降低。从图4中可看出, 桥臂电流在故障发生后的方向为负,子模块闭锁后 故障电流流经独立二极管D₁,如图3(b)所示,电容 C₁反向接入故障回路,电容C₂被旁路。故障相单元 中的N个子模块电容C₁可以串联等效为一个容值 为C₀/N的高压电容,单个桥臂中的电容则等效容 值为2C₀/N的高压电容。

假设A相电压最高、C相电压最低,图5给出了 DCDHBSM-MMC在电流阻断阶段的故障电流通路。此故障通路包含N个电容和2N个二极管,根据基尔霍夫电压定律,可得

$$U_{\rm ac_max} = NU_{\rm C} + 2NU_{\rm D} + U_{\rm F} \tag{1}$$

式中, *U*_{ac_max}为A相和C相之间的压差最大值; *U*_c为 电容电压值; *U*_D为二极管导通压降; *U*_F为直流侧电 感、电阻及故障点等效电阻的压降之和。

图5 电流阻断阶段的故障电流通路

Figure 5 Fault current path during current blocking stage

MMC 额 定 直 流 电 压 U_{dc.n}、交 流 相 电 压 峰 值 U_{ac max}与额定子模块电容电压 U_{c.n}之间的关系为

$$\begin{cases} U_{ac_max} = \frac{\sqrt{3}}{2} m U_{dc_m} \\ U_{dc_m} = N U_{C_m} \end{cases}$$
(2)

式中, m为电压调制比, m∈[0,1]。

联立式(1)和式(2),便可得到

$$2NU_{\rm D} = \frac{\sqrt{3}}{2} mNU_{\rm C_n} - NU_{\rm C} - U_{\rm F} \qquad (3)$$

在 MMC 闭锁瞬间,其直流网络中储存着系统 正常运行储备能量、子模块电容器组释放能量与交 流侧传输能量。闭锁动作完成后,仅有少量能量通 过电阻元件散失,绝大部分的能量将转移至参与故 障电流阻断的子模块电容器组内^[20]。因此,当直流 故障电流被阻断后,故障回路中电容的电压值会略 高于额定电压,即 U_c>U_{c,n}。根据上述分析,可以 判断二极管的导通压降是否满足关系式:

$$2NU_{\rm D} = \frac{\sqrt{3}}{2} mNU_{\rm C_{I}n} - NU_{\rm C} - U_{\rm F} < \frac{\sqrt{3}}{2} mNU_{\rm C_{I}n} - NU_{\rm C_{I}n} - U_{\rm F} < \left(\frac{\sqrt{3}}{2} m - 1\right) NU_{\rm C_{I}n} < 0$$
(4)

由式(4)可知,在电流阻断阶段,交流系统向故障点馈流,故障电流通路中的二极管将因承受反压 而关断,故交流系统与直流侧故障点之间的联系被 切断,DCDHBSM-MMC完成故障电流阻断。

2.2 子模块电容电压均衡方法

在故障电流阻断过程中,DCDHBSM的电容C₂ 被旁路,故障电流仅对电容C₁充电,C₁的电压将升 高。因此,作为一种旁路型子模块,DCDHBSM 面 临着故障闭锁后电容电压不均衡的问题。在换流 站恢复功率传输之前,本文采用排序算法对子模块 的电容电压进行均衡,具体可分为2种情况。

 如图 6(a)所示,当 i_{sm}>0时,桥臂电流为子 模块电容 C₂充电,优先投入电容 C₂电压相对较低的 子模块;在电流作用下,C₂电压抬升。

2) 如图 6(b)所示,当*i*_{sm}<0时,子模块电容 C₁ 通过桥臂电流放电,优先投入电容 C₁电压相对较低 的子模块;在电流作用下,C₁电压下降。

图6 DCDHBSM的电容电压均衡过程

最终,在排序算法的作用下,DCDHBSM的电容C1、C2的电压最终都将趋于均衡。

2.3 故障穿越流程

为避免永久性故障下重合闸给换流站带来的冲击,在换流站解锁前,应对故障性质进行检测。 基于文献[28]提出的故障性质检测手段,从直流侧 发生短路故障至换流站恢复正常运行,本文设计了 DCDHBSM-MMC的故障穿越策略,具体故障穿越 流程如图7所示。

图 7 DCDHBSM-MMC的故障穿越策略流程 Figure 7 The flowchat of fault ride-through strategy of DCDHBSM-MMC

该策略具体有4个步骤。

 1)当系统检测出直流短路故障时,换流站收到 闭锁指令,所有子模块闭锁。由于采用了具备故障 电流阻断能力的DCDHBSM,直流故障电流会快速 降低为0A,且交流侧不会馈流。

2) 直流故障电流降至0A后,断开直流侧隔离 开关,实现故障隔离。

3) 对故障性质进行检测:如果该故障是永久性 故障,则闭锁换流站,断开交流断路器,等待检修; 如果该故障是瞬时性故障,则重启换流站,解锁子 模块的驱动信号,建立直流电压,并采用排序算法 对DCDHBSM的2个电容的电压进行均衡。

 福离开关重合成功后,系统恢复正常运行, 换流站完成故障穿越。

3 经济性分析

除在建设投资中占重要部分的器件成本外,运 行损耗也是影响 MMC 经济性的重要指标,本文将 从这 2方面对所提 DCDHBSM 的经济性进行分析, 并将其与典型串联型子模块 FBSM 和 SCDSM、并 联型子模块 CDSM 以及旁路型子模块 HB-FBSM 等故障限流子模块进行对比。

3.1 器件成本

在相同电容参数下,子模块的器件成本可通过 单位电容对应的开关器件数目来衡量。对同一桥 臂电流,开关器件的价格与其耐压水平有关。因 此,应在相同耐压水平下对开关器件的数目进行 统计,若开关元器件的耐压不同,须进行归算。 FBSM、CDSM和HB-FBSM在正常及闭锁状态下 的所有开关器件的最大耐压均为单倍电容电压。 从图2、3中可看出,若认为每个子模块电容电压均 为U_c,则DCDHBSM的二极管D₁承受的最大电压 为2U_c,其余开关器件承受的最大电压为U_c。接 下来,对串联双子模块SCDSM的器件耐压进行分 析,其在闭锁状态下的电流通路如图8(a)所示。 作为对比,图8(b)重绘了DCDHBSM在闭锁状态 下的电流通路。

从图 8(a)中可看出,SCDSM 的二极管 D₁承 受的最大电压为 2U_c,IGBT 中 T₀及反并联二极管 D₀承受的最大电压亦为 2U_c。与 SCDSM 相比, DCDHBSM 的开关器件种类及数目均相同,但在故 障闭锁状态下,T₀及 D₀的最大耐压为 U_c。耐压为 2U_c的开关器件可由 2个耐压为 U_c的开关器件串联

图8 闭锁状态下的电流通路

得到。因此,耐压为2倍电容电压的开关器件可归 算为2个耐压为单倍电容电压的开关器件。

根据耐压大小对器件数目进行归算,并将二极管相对 IGBT 的价格比考虑在内,可得子模块单位 电容对应的开关器件总数 C_{tot},即

 $C_{\text{tot}} = N_{\text{T1}} + 2N_{\text{T2}} + q(N_{\text{D1}} + 2N_{\text{D2}})$ (5) 式中, N_{T1} 和 N_{T2} 分别为单倍电容耐压和2倍电容耐 压的IGBT数目; N_{D1} 和 N_{D2} 分别为单倍电容耐压和 2倍电容耐压的二极管数目;q为二极管相对IGBT 的价格比,这里取为0.2。

表2给出了DCDHBSM及FBSM等典型故障限流子模块单位电容对应的开关器件数目。由表2可知,对于串联型子模块,FBSM的IGBT和二极管数目较多,其对应的Ctot也较高;SCDSM的器件数目虽然减少,但其承受2倍电容电压的IGBT和二极管的Ctot也较多。旁路型子模块HB-FBSM由HBSM和FBSM串联构成,其Ctot相对FBSM的明显减少。与并联型子模块CDSM相比,DCDHBSM的二极管数目减少,但考虑耐压因素,这二者的Ctot相同,且其在所对比的子模块中数量最少。

表 2 子模块单位电容对应的器件数目 **Table 2** Device number per capacitor of sub-module

			•				
米可	反称	IG	ΒТ	二札	及管	C	
天刑	石你	N_{T1}	N_{T2}	$N_{\rm D1}$	$N_{ m D2}$	C _{tot}	
中 파 파	FBSM	4.0	0.0	4.0	0.0	4.8	
甲状型	SCDSM	2.0	0.5	2	1.0	3.8	
并联型	CDSM	2.5	0.0	3.5	0.0	3.2	
之 따 피	HB-FBSM	3.0	0.0	3.0	0.0	3.6	
穷蹐型	DCDHBSM	2.5	0.0	2.5	0.5	3.2	

3.2 运行损耗

MMC的运行损耗由开关器件的驱动损耗、静态损耗及开关损耗共同组成。具体而言,开关损耗

涵盖了 IGBT 在导通与关断时的损耗,二极管开通 和反向恢复过程中产生的损耗,静态损耗包括 IGBT 和二极管的通态损耗与正向截止损耗。由于 在运行损耗中的占比极小,驱动损耗、二极管的开 通损耗与 IGBT 和二极管的正向截止损耗均可忽 略^[29]。因此,当对 MMC 运行损耗展开计算时,在静 态损耗方面,仅须量化 IGBT 与二极管的通态损耗; 在计算开关损耗时,须将除二极管开通损耗以外的 IGBT 导通损耗、关断损耗以及二极管反向恢复损 耗纳入考虑范围。运行损耗的具体计算方法可参 考文献[29-31]。

在 MATLAB/Simulink 中,搭建桥臂子模块 数为10、额定容量为2 MV•A、额定直流电压为 20 kV 的单端 MMC 仿真模型,计算 DCDHBSM 及 FBSM、CDSM 等典型故障限流子模块的运行 损耗。根据仿真系统参数,考虑器件耐压裕度,使 用 ABB公司生产的耐压耐流等级为 3300 V/800 A 的 5SNA0800N330100-IGBT 作为子模块的开关 器件。将损耗计算值除以传输功率即得到损耗百 分比,结果见表3。

表3 多种子模块的运行损耗对比

Table 3 Operation loss comparison of	Table 3	Operation loss	comparison of
--	---------	----------------	---------------

	var	%		
类别	名称	开关损耗	通态损耗	运行损耗
中形型	FBSM	0.526	1.246	1.772
中状型	SCDSM	0.514	0.902	1.416
并联型	CDSM	0.512	0.878	1.390
立政武	HB-FBSM	0.515	0.889	1.404
穷路型	DCDHBSM	0.510	0.879	1.389

由表3可知,串联型子模块FBSM和SCDSM的运行损耗较高,并联型子模块CDSM、旁路型子模块HB-FBSM和DCDHBSM的运行损耗较低。 经济性分析结果表明,相较于CDSM、FBSM等典型的故障限流子模块,所提DCDHBSM有较低的器件成本和运行损耗,表现出良好的工程应用潜力。

4 仿真验证

为验证所提二极管钳位型双半桥子模块 DCDHBSM及其故障穿越策略在MMC直流侧发 生短路故障后的有效性,本文采用MATLAB/ Simulink,分别搭建了图9所示的基于DCDHBSM、 串联双子模块SCDSM和钳位双子模块CDSM的 对称单级 MMC 仿真模型,并将模型参数列于表4。 其中,串联型子模块 SCDSM 和并联型子模块 CDSM 是对比 DCDHBSM 直流短路电流阻断速度 的参照。所有仿真模型均采用最近电平逼近调制 策略和外环定有功无功控制,除子模块拓扑外,其 余均相同。在0.5 s时,设置线路中点位置出现直流 双极短路故障。

图9 仿真模型示意

Figure 9 Schematic diagram of simulation model

表4 仿真模型参数

Table 4 Parameters of simulation model

额定容量/ 交		流线电压	直流	电压/	桥臂子模	块 桥臂电感/
MVA	有	效值/kV	k	V	数/N	mH
400		210	± 2	200	10	76
子模块电容	电	子模块电	容值/	架空约	线路长度/	架空线路电阻/
压额定值/kV		μF		km		$(\Omega \cdot km^{-1})$
20		666		20		0.1

4.1 正常运行状态仿真验证

图 10 给出了 DCDHBSM-MMC 在正常状态下的仿真结果。换流器交流侧输出电压为 19 电平阶梯 波,如图 10(a)所示,这与基于模型参数得到的理论值 一致。在图 10(b)中 U_{C1,1}、U_{C2,1}和 U_{C1,2}、U_{C2,2}分别为 桥臂第1和第2个 DCDHBSM 中C₁、C₂的电容电压。

Figure 10 Simulation results of DCDHBSM-MMC during normal operation

从图 10 中可以看出, C₁和 C₂的电压均稳定在额 定值 20 kV 左右, 且均衡效果良好。该仿真结果说 明, 当采用所提 DCDHBSM 作为基本模块单元时, MMC 可正常实现预期的基本功能, 且运行稳定。

4.2 直流短路电流阻断能力仿真验证

在 0.5 s 直流侧发生双极短路故障后,系统于 2 ms检测到故障,并闭锁全部 IGBT。依赖故障限 流子模块阻断直流短路电流的仿真结果如图 11 所 示。从图 11(a)中可看出,故障发生后、IGBT 闭锁 前,子模块电容向故障点放电,故障电流迅速上升; IGBT 闭锁后,故障限流子模块引导故障电流对子 模块电容充电,故障电流快速降低为0 A。在故障 电流阻断速度方面,SCDSM最快,CDSM最慢,所提 DCDHBSM 介于 SCDSM 与 CDSM 之间,这与串 联型、并联型和旁路型子模块在阻断速度方面的理 分析结果一致。图 11(b)、11(c)、11(d)分别给出了 DCDHBSM-MMC 的直流侧电压、交流侧电流以及

A相上桥臂子模块电容电压的仿真结果。从图 11 (c)中可以看出,DCDHBSM能够可靠地阻断交流 侧馈流。作为一种旁路型子模块,DCDHBSM的2 个电容中仅有一个能起到阻断故障电流的作用。 子模块闭锁后,被旁路的电容电压保持不变,阻断 故障电流的电容电压升高,如图 11(d)所示。

4.3 故障穿越策略仿真验证

为证明所提故障穿越策略的有在恢复功率传输之前,应对因仅一半电容参与故障电流阻断而产生的对不均衡电容电压的均衡效果,也为进一步证明所提故障穿越策略的有效性,图12展示了DCDHBSM-MMC从正常运行、故障发生、IGBT闭锁、IGBT解锁至恢复稳定运行整个过程的仿真结果。

在故障电流被彻底阻断后,0.52 s时,系统在零 电流状态下断开直流侧隔离开关;假设0.5 s时发生 的故障为瞬时性故障,且该故障在0.55 s时消失; 0.60 s时,解锁IGBT以建立直流电压,并利用排序 算法对子模块电容电压进行均衡;0.68 s时,闭合直 流侧隔离开关;0.70 s时,恢复功率传输。从图12(b)、 (c)中可看出,子模块解锁后,直流电压快速建立,电 容电压快速恢复至额定值附近;从图12(a)中可看 出,恢复功率传输后,系统经过约0.10 s的暂态过程 即达到稳定运行状态。在所提直流故障穿越策略的作用下,装配了DCDHBSM的MMC系统很好地完成了故障电流的阻断任务,解锁后电容C1和C2的电压被较好地均衡,且其在恢复功率传输后迅速达到稳定状态。

5 试验验证

为进一步验证所提 DCDHBSM 阻断直流故障 电流的可行性,本文搭建了表5所列设计参数下的 DCDHBSM-MMC物理试验系统。

表 5	DCDHBSM-MMC物理试验系统设计参数
Table 5	5 Physical parameters of DCDHBSM-MMC

experiment	system

参数	单位	数值
交流相电压有效值	V	220
直流侧额定电压	V	± 400
负载电阻	Ω	160
子模块电容电压额定值	V	200
桥臂子模块数量	个	2
子模块电容	mF	1.32
桥臂电感	mH	5.6
陶瓷保险丝额定电流	А	32

图 13 展示了该试验系统的设计结构和子模块 电路板。

(b) 子模块电路板

Figure 13 Experimental platform structure and physical circuit of DCDHBSM-MMC

从图 13(a)中可看出,MMC 每个桥臂包含 2个 DCDHBSM₁与 DCDHBSM₂, *R*_{dc} 为 直流侧电阻负 载,直流侧为电阻负载,与电阻并联的是为双极短 路故障设置的开关 S, *u*_{sa}、*u*_{sb}、*u*_{sc}分别为市电交流三 相电压;单个 DCDHBSM 的硬件电路如图 13(b)所 示。直流侧保险丝的额定电流为 32 A,为保证试验 期间保险丝和器件不被烧毁,设置故障电流达到 21 A时闭锁子模块。

通过数字示波器的波形录制功能,图 14 给出了 DCDHBSM-MMC 物理试验平台在故障穿越试验 过程中的直流电流、直流电压和子模块电容电压录 波结果。从图 14 中可看出,从直流短路故障发生瞬 间到子模块完成闭锁动作这段时间内,故障电流迅 速上升,在子模块完成闭锁后,故障电流迅速降低 为 0 A,所提 DCDHBSM 的故障电流阻断能力得到 了充分的验证。A 相上桥臂 DCDHBSM1的 2 个电 容电压由于故障过程极短且其能量较小,其在故障 电流阻断过程中的充电效果并不明显。

图14 DCDHBSM试验结果

Figure 14 Experimental results of DCDHBSM

6 结语

本文提出了一种具备直流短路电流阻断能力 的二极管钳位型双半桥子模块DCDHBSM及其直 流故障穿越策略,根据理论分析、仿真结果和试验 结果,得出以下结论:

1)所提 DCDHBSM 由两个 HBSM、一个带反 并联二极管的 IGBT 以及一个独立二极管构成,故 障闭锁时可将一个电容反向接入故障回路来阻断 故障电流,属于旁路型故障限流子模块。

2)相较于 FBSM、FB-HBSM 等典型的故障限 流子模块,本文所提出的 DCDHBSM 无论是在开关 器件成本上,还是运行损耗指标上的表现都更好,在 设备投资、运维成本等经济性层面展现出一定优势。

3)数值仿真与物理试验结果验证了所提 DCDHBSM及其直流故障穿越策略的有效性。然 而,由于不具备受控状态下输出负电平能力, DCDHBSM无法完成无闭锁故障穿越,这将作为本 文的后续研究内容。

参考文献:

- 林毅,林威,刘鑫,等.一种适用于MMC的混合步长电磁暂 态仿真方法[J].电力科学与技术学报,2023,38(2):58-66.
 LIN Yi, LIN Wei, LIU Xin, et al. A hybrid step-size electromagnetic transient simulation method suitable for MMC[J]. Journal of Electric Power Science and Technology,2023,38(2):58-66.
- [2] CHAO C X,ZHENG X D,WENG Y,et al.High-sensitivity differential protection for offshore wind farms collection line with MMC-HVDC transmission[J]. IEEE Transactions on Power Delivery,2024,39(3):1428-1439.
- [3] 薛翼程,张哲任,徐政,等.构网型变流器对交流系统低频振荡的影响分析与阻尼控制[J].电力系统自动化,2023,47 (16):103-113.

XUE Yicheng, ZHANG Zheren, XU Zheng, et al. Impact analysis and damping control of grid-forming converter for low-frequency oscillation of AC system[J]. Automation of Electric Power Systems,2023,47(16):103-113.

[4] 张烜一,江修波,郑文迪,等.基于电阻耗能支路的MMC-HVDC线路故障清除与重启恢复策略[J].电力科学与技 术学报,2021,36(6):67-76.

ZHANG Xuanyi, JIANG Xiubo, ZHENG Wendi, et al. MMC-HVDC line fault clearing and restart recovery strategy based on the resistance energy-consuming branch [J]. Journal of Electric Power Science and Technology, 2021,36(6):67-76.

[5] 饶宏,黄伟煌,郭知非,等.柔性直流输电技术在大电网中的

应用与实践[J].高电压技术,2022,48(9):3347-3355.

RAO Hong, HUANG Weihuang, GUO Zhifei, et al. Practical experience of VSC-HVDC transmission in large grid[J].High Voltage Engineering,2022,48(9):3347-3355.

- [6] 赵妍,张森禹,黄艳祖,等.基于改进深度残差网络的柔性直流配电线路故障辨识[J].智慧电力,2024,52(9):72-79. ZHAO Yan, ZHANG Senyu, HUANG Yanzu, et al. Fault identification for flexible DC distribution line based on improved deepresidual network [J].SmartPower,2024,52(9):72-79.
- [7] 苑宾,厉璇,尹聪琦,等.孤岛新能源场站接入柔性直流高频振荡 机理及抑制策略[J].电力系统自动化,2023,47(4):133-141. YUAN Bin, LI Xuan, YIN Congqi, et al. Mechanism and suppression strategy of high-frequency oscillation caused by integration of islanded renewable energy station into MMC-HVDC system[J]. Automation of Electric Power Systems,2023,47(4):133-141.
- [8] 林少伯,李新年,雷霄,等.张北柔性直流电网运行方式转换风 险分析及预防措施[J].电网技术,2023,47(10):4017-4025. LIN Shaobo,LI Xinnian,LEI Xiao,et al.Risk analysis and prevention measures of operation mode transformation for Zhangbei VSC-based DC grid[J]. Power System Technology,2023,47(10):4017-4025.
- [9] 蔡希鹏,黄伟煌,李桂源,等.大规模光伏集群经柔性直流构 网送出的运行控制技术研究[J].中国电机工程学报,2023, 43(22):8734-8745.

CAI Xipeng, HUANG Weihuang, LI Guiyuan, et al. Research on operation control strategy of large-scale photovoltaic cluster transmission via grid-forming VSC-HVDC[J]. Proceedings of the CSEE, 2023, 43(22): 8734-8745.

[10] 陈磊,何慧雯,王磊,等.基于半桥型 MMC 的柔性直流电 网故障限流方法综述[J].电力系统保护与控制,2021,49 (21):175-186.
 CHEN Lei, HE Huiwen, WANG Lei, et al. Review of the

fault current limiting approaches for a flexible DC grid based on a half-bridge MMC[J].Power System Protection and Control,2021,49(21):175-186.

- [11] 聂永辉,张德伟,高磊,等.MMC型柔性直流输电系统的中 高频振荡无源阻尼抑制策略[J].电力系统保护与控制, 2024,52(16):141-149.
 NIE Yonghui, ZHANG Dewei, GAO Lei, et al. Passive damping suppression strategy for medium and high frequency oscillations in MMC type flexible DC transmission systems[J]. Power System Protection and Control,2024,52(16):141-149.
- [12] 刘思奇,胡鹏飞,王栋,等.基于 MMC 主动限流的 VSC-HVDC 双极短路故障控保协同策略[J].电力系统自动化, 2024,48(10):192-202.
 LIU Siqi, HU Pengfei, WANG Dong, et al. Collaborative control and protection strategy for bipolar short-circuit fault in VSC-HVDC based on active MMC current limiting[J]. Automation of Electric Power Systems,2024,48(10):192-202.
- [13] 東洪春,邵宗学,江耀曦,等.具备闭锁和非闭锁模式抑制直

流故障电流的新型模块化多电平变换器拓扑[J].电工技术学报,2022,37(21):5526-5540.

SHU Hongchun, SHAO Zongxue, JIANG Yaoxi, et al. A new modular multilevel converter topology with capability of DC faults clearing under blocking and nonblocking mode[J]. Transactions of China Electrotechnical Society,2022,37(21):5526-5540.

- [14] FANG X F, LI G, CHEN C F, et al. An energy absorbing method for hybrid MMCs to avoid full-bridge submodule overvoltage during DC fault blocking[J]. IEEE Transactions on Power Electronics,2022,37(5):4947-4951.
- [15] MARQUARDT R. Modular Multilevel Converter topologies with DC-Short circuit current limitation[C]// 8th International Conference on Power Electronics -ECCE Asia.Jeju,Korea (South).IEEE,2011:1425-1431.
- [16] 张建坡,赵成勇,孙海峰,等.模块化多电平换流器改进拓扑 结构及其应用[J].电工技术学报,2014,29(8):173-179.
 ZHANG Jianpo, ZHAO Chengyong, SUN Haifeng, et al. Improved topology of modular multilevel converter and application[J]. Transactions of China Electrotechnical Society,2014,29(8):173-179.
- [17] 窦真兰,张春雁,杨海涛,等.模块化多电平电池储能系统功率控 制与均衡策略研究[J].电网与清洁能源,2024,40(3):155-162. DOU Zhenlan, ZHANG Chunyan, YANG Haitao, et al. Research on the power control and equalization strategy of the modular multilevel battery energy storage system [J].Power System and Clean Energy,2024,40(3):155-162.
- [18] 向往,林卫星,文劲宇,等.一种能够阻断直流故障电流的新型子模块拓扑及混合型模块化多电平换流器[J].中国电机工程学报,2014,34(29):5171-5179.
 XIANG Wang, LIN Weixing, WEN Jinyu, et al. A new topology of sub-modules with DC fault current blocking capability and a new type of hybrid MMC converter[J]. Proceedings of the CSEE,2014,34(29):5171-5179.
- [19] 王琛,谭开东,王毅,等.具备直流故障清除和自均压能力的 MMC移位全桥子模块拓扑[J].电力系统自动化,2020,44 (24):151-160.

WANG Chen, TAN Kaidong, WANG Yi, et al. Topology of MMC oblique-connection full-bridge sub-module with capability of DC fault clearing and voltage self-balancing[J]. Automation of Electric Power Systems, 2020, 44(24):151-160.

- [20] 王琛,许同,王毅,等.具备阻断直流故障电流能力的MMC 钳位双电容子模块[J].高电压技术,2021,47(5):1729-1739.
 WANG Chen, XU Tong, WANG Yi, et al. A clamp dual capacitor submodule of MMC with DC fault current blocking capability[J].High Voltage Engineering,2021,47(5):1729-1739.
- [21] 荣飞,孙宗卿,徐爽,等.基于辅助子模块的 MMC 输出电流 谐波优化控制方法[J].高压电器,2023,59(5):154-162.
 RONG Fei, SUN Zongqing, XU Shuang, et al. Harmonic optimization control method of MMC output current based on auxiliary sub-module[J]. High Voltage Apparatus,2023,59(5):154-162.

- [22] 王琛,陶建业,王毅,等.具备故障电流对称清除能力的双向开 关钳位式全桥子模块[J].电网技术,2021,45(7):2596-2604.
 WANG Chen, TAO Jianye, WANG Yi, et al. Bidirectional switch clamp full bridge submodule with fault current symmetrical clearing capability[J]. Power System Technology,2021,45(7):2596-2604.
- [23] 王琛,魏子文,王毅,等.一种新型MMC并联双端口子模块 及其三阶段故障电流阻断机理[J].电力系统保护与控制, 2023,51(1):81-92.
 WANG Chen,WEI Ziwen,WANG Yi,et al.A novel MMC parallel dual-port submodule and its three-stage fault current blocking mechanism[J].Power System Protection and Control,2023,51(1):81-92.
- [24] LI X Q,SONG Q,LIU W H,et al.Experiment on DC-fault ride through of MMC using a half-voltage clamp submodule[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2018,6(3):1273-1279.
- [25] 李帅,郭春义,赵成勇,等.一种具备直流故障穿越能力的低损耗 MMC 拓扑[J]. 中国电机工程学报,2017,37(23): 6801-6810+7071.
 LI Shuai, GUO Chunyi, ZHAO Chengyong, et al. A novel MMC topology with lower power loss and DC fault ride-through capability[J]. Proceedings of the CSEE, 2017, 37 (23):6801-6810+7071.
- [26] RAO H, ZHOU Y B, ZOU C Y, et al. Design aspects of hybrid HVDC system[J]. CSEE Journal of Power and Energy Systems,2021,7(3):644-653.
- [27] MUNIAPPAN M. A comprehensive review of DC fault protection methods in HVDC transmission systems[J]. Protection and Control of Modern Power Systems,2021,6(1):1.
- [28] 王帅,毕天姝,李伟,等.MMC-MTDC线路双极永久性故障 快速识别方法研究[J].可再生能源,2017,35(1):43-49.
 WANG Shuai, BI Tianshu, LI Wei, et al. A fast bipolar permanent fault identification approach for MMC-MTDC lines[J].Renewable Energy Resources,2017,35(1):43-49.
- [29] 徐政,肖晃庆,张哲任,等.柔性直流输电系统[M].2版.北京:机械工业出版社,2017.
 XU Zheng, XIAO Huangqing, ZHANG Zheren, et al. Flexible DC transmission system[M]. 2nd ed. Beijing: China Machine Press.2017.
- [30] 罗永捷,宋勇辉,熊小伏,等.高压大容量MMC换流阀损耗 精确计算[J].中国电机工程学报,2020,40(23):7730-7742.
 LUO Yongjie, SONG Yonghui, XIONG Xiaofu, et al. Accurate loss calculation method for bulk-power MMCs
 [J].Proceedings of the CSEE,2020,40(23):7730-7742.
- [31] 曹宇,胡鹏飞,蔡婉琪,等.基于MMC的超级电容与蓄电池 混合储能系统及其混合同步控制策略[J].中国电力,2024, 57(6):78-89.

CAO Yu,HU Pengfei,CAI Wanqi,et al.MMC based super capacitor and battery hybrid energy storage system and hybrid synchronous control strategy[J]. Electric Power, 2024,57(6):78-89.