Sector electricity consumption behavior features based abnormal electricity consumption detection method for street lamps
CSTR:
Author:
Clc Number:

TM761

  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • | | | |
  • Comments
    Abstract:

    Datadriven abnormal electricity usage detection generally classifies or clusters user electricity usage behavior according to the set characteristic index items to identify electricity usage anomalies. Affected by the diversity of electricity usage behaviors in different sectors, there is often a problem of high false alarm rate in practical applications. Utilizing the characteristics of similar electricity usage behaviors of users in similar subindustry, this paper proposes a method that refines characteristic index items to detect abnormal electricity usage based on industryspecific electricity usage characteristics. Based on the actual load data of the users of the street lamp, firstly the load composition and electricity behavior characteristics of the users of the street lamp are analyzed. Then characteristic index items that can accurately describe the electricity consumption behavior of street lamp users is established. Thereafter, on this basis, according to the analysis of the statistical characteristics of the characteristic index items, the bimodal histogram method is used to set the judgment threshold of abnormal street lamp users. The abnormal street lamp users whose characteristic index items exceed the threshold in the actual power grid are identified. At last the effectiveness of proposed method is tested. Moreover, general law of the regional distribution of users with abnormal electricity consumption is also analyzed and summarized.

    Reference
    [1] 李端超,王松,黄太贵,等.基于大数据平台的电网线损与窃电预警分析关键技术[J].电力系统保护与控制,2018,46(5):143-151.LI Duanchao,WANG Song,HUANG Taigui,et al.Key technologies of line loss and stealing electricity prediction analysis based on big data platform[J].Power System Protection and Control,2018,46(5):143-151.
    [2] 刘恒勇,史帅彬,徐旭辉,等.一种关联RNN模型的非侵入式负荷辨识方法[J].电力系统保护与控制,2019,47(13):162-170.LIU Hengyong,SHI Shuaibin,XU Xuhui,et al.A nonintrusive load identification method based on RNN model[J].Power System Protection and Control,2019,47(13):162-170.
    [3] 游文霞,申坤,杨楠,等.基于AdaBoost集成学习的窃电检测研究[J].电力系统保护与控制,2020,48(19):151-159.YOU Wenxia,SHEN Kun,YANG Nan,et al.Research on electricity theft detection based on AdaBoost ensemble learning[J].Power System Protection and Control,2020,48(19):151-159.
    [4] 温盛科,杨悦辉,蔡妙妆,等.基于纵横交叉优化灰色模型的电能计量装置状态评估方法[J].电力科学与技术学报,2018,33(3):44-49.WEN Shengke,YANG Yuehui,CAI Miaozhuang,et al.Research on state assessment method of electric enery metering devices based on crisscross optimization grey model[J].Journal of Electric Power Science and Technology,2018,33(3):44-49.
    [5] 庄池杰,张斌,胡军,等.基于无监督学习的电力用户异常用电模式检测[J].中国电机工程学报,2016,36(2):379-387.ZHUANG Chijie,ZHANG Bin,HU Jun,et al.Anomaly detection for power consumption patterns based on unsupervised learning[J].Proceedings of the CSEE,2016,36(2):379-387.
    [6] 田力,向敏.基于密度聚类技术的电力系统用电量异常分析算法[J].电力系统自动化,2017,41(5):64-70.TIAN Li,XIANG Min.Abnormal power consumption analysis based on densitybased spatial clustering of applications with noise in power systems [J].Automation of Electric Power Systems,2017,41(5):64-70.
    [7] 孙毅,李世豪,崔灿,等.基于高斯核函数改进的电力用户用电数据离群点检测方法[J].电网技术,2018,42(5):1595-1606.SUN Yi,LI Shihao,CUI Can,et al.Improved outlier detection method of power consumer data based on Gaussian kernel function[J].Power System Technology,2018,42(5):1595-1606.
    [8] 黄剑平,陈皓勇,钟佳宇,等.基于用户成本选择用户范围的分时电价最优策略[J].中国电力,2020,53(9):107-116.HUANG Jianping,CHEN Haoyong,ZHONG Jiayu,et al.Optimaltimeofuse price strategy with selecting customer's range based on cost[J].Electric Power,2020,53(9):107-116.
    [9] 罗建国,陈琳,林磊,等.基于用电客户群体细分的差异化用电行为特征分析[J].电网与清洁能源,2020,36(10):68-72.LUO Jianguo,CHEN Lin,LIN Lei,et al.Analysis of the characteristics of the differentiated electricity consumption behavior based on the subdivision of the customer group[J].Power System and Clean Energy,2020,36(10):68-72.
    [10] 郑思达,梁琪琳,彭鑫霞,等.基于模糊聚类的异常用电行为识别研究[J].电测与仪表,2020,57(19):40-44.ZHENG Sida,LIANG Qilin,PENG Xinxia,et al.Research on abnormal power consumption behavior identification based on fuzzy clustering[J].Electrical Measurement & Instrumentation,2020,57(19):40-44.
    [11] 江剑峰,张垠,田书欣,等.基于云理论的智能电能表故障数据分析[J].电力科学与技术学报,2020,35(2):163-169.WANG Jianfeng,ZHANG Yin,TIAN Shuxin,et al.Fault data analysis of smart electricity meter based cloud theory[J].Journal of Electric Power Science and Technology.2020,35(2):163-169.
    [12] GB/T 4754—2017.国民经济行业分类和代码表[S].
    [13] 刘新宇,徐海潮,初秀民,等.道路照明智能控制系统的设计与实现[J].武汉理工大学学报,2011,33(10):69-72.LIU Xinyu,XU Haichao,CHU Xiumin,et al.Design and realization of road lighting intelligent control system [J].Journal of Wuhan University of Technology,2011,33(10):69-72.
    [14] 罗鸿轩,肖勇,杨劲锋,等.基于边缘计算与MapReduce的智能量测终端数据处理方法[J].智慧电力,2020,48(3):22-29.LUO Hongxuan,XIAO Yong,YANG Jinfeng,et al.Data processing method for smart metering terminal based on edge computing and mapreduce[J].Smart Power,2020,48(3):22-29.
    [15] 牛勃,马飞越,丁培,等.GIS局部放电智能巡检定位技术及应用[J].高压电器,2020,56(1):188-196.NIU Bo,MA Feiyue,DING Pei,et al.Intelligent inspection and location technology of GIS partial discharge and its application[J].High Voltage Apparatus,2020,56(1):188-196.
    [16] Glasbey C A.An analysis of histogrambased thresholding algorithms[J].CVGIP:Graphical Models and Image Processing,1993,55(6):532-537.
    [17] 熊玮,鄢发齐,汪旸,等.实际电网频率概率分布特性演变及成因分析[J].电力系统自动化,2020,44(2):221-226.XIONG Wei,YAN Faqi,WANG Yang,et al.Analysis on variation of frequency probability distribution and causes in actual power grid [J].Automation of Electric Power Systems,2020,44(2):221-226.
    [18] 冯静,周经伦.长寿命产品退化筛选试验方法研究[J].电子学报,2008,47(8):1538-1542.FENG Jing,ZHOU Jinglun.Research on environmental stress degradation screening method for long life products[J].Acta Electronica Sinica,2008,47(8):1538-1542.
    [19] 陶晓玲,孔凯传,赵峰,等.基于LSTM的内部用户安全行为评估方法[J].电子科技大学学报,2019,48(5):779-785.TAO Xiaoling,KONG Kaichuan,ZHAO Feng,et al.Internal user security behavior evaluation method based on LSTM[J].Journal of University of Electronic Science and Technology of China,2019,48(5):779-785.
    [20] Hussein R,Shaban K B,ElHag A H,Wavelet transform with histogrambased threshold estimation for online partial discharge signal denoising[J].IEEE Transactions on Instrumentation and Measurement,2015,64(12):3601-3614.
    [21] 李春燕,蔡文悦,赵溶生,等.基于优化SAX和带权负荷特性指标的AP聚类用户用电行为分析[J].电工技术学报,2019,34(S1):368-377.LI Chunyan,CAI Wenyue,ZHAO Rongsheng,et al.Customer behavior analysis based on affinity propagation algorithm with optimized SAX and weighted load characteristic indices[J].Transactions of China Electrotechnical Society,2019,34(S1):368-377.
    [22] 胡天宇,郭庆来,孙宏斌.基于堆叠去相关自编码器和支持向量机的窃电检测[J].电力系统自动化,2019,43(1):119-125.HU Tianyu,GUO Qinglai,SUN Hongbin.Nontechnical loss detection based on stacked uncorrelating autoencoder and support vector machine[J].Automation of Electric Power Systems,2019,43(1):119-125.
    [23] 金晟,苏盛,曹一家,等.基于格兰杰归因分析的高损台区窃电检测[J].电力系统自动化,2020,44(23):82-89.JIN Sheng,SU Sheng,CAO Yijia,et al.Electricitytheft detection for highloss distribution area based on granger causality analysis[J].Automation of Electric Power Systems,2020,44(23):82-89.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

杨艺宁,薛阳,徐英辉,宋如楠,苏盛.基于行业特性的路灯用电异常检测方法[J].电力科学与技术学报英文版,2021,36(3):165-173. Yang Yining, Xue Yang, Xu Yinghui, Song Runan, Su Sheng. Sector electricity consumption behavior features based abnormal electricity consumption detection method for street lamps[J]. Journal of Electric Power Science and Technology,2021,36(3):165-173.

Copy
Share
Article Metrics
  • Abstract:198
  • PDF: 983
  • HTML: 0
  • Cited by: 0
History
  • Online: August 26,2021
Article QR Code