Big data recognition method for daily net load curve of substation bus based on SVM
Author:
Clc Number:

TM863

  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • | | | |
  • Comments
    Abstract:

    In view of the accuracy and low time efficiency of the traditional load curve classification method based on statistics, the non-invasive load monitoring and decomposition technology is extended and applied to the bus load curve decomposition of substation in this paper. A method for identifying the daily net load curve of the bus based on SVM and SCADA big data is proposed by considering the output of new energy. Firstly, the change process of the load active power curve of typical industries is analyzed, and the active power mutation time for load pre-screening is extracted. Secondly, Fourier series are utilized to fit the active power waveform. The industry load feature tags are obtained, waveform features are extracted. In addition, for the purpose of identification of the industry load characteristics, the support vectors machine is employed for the waveform characteristics classification and recognization for the daily net load curve of the substation bus. In the end, a 330 kV substation in Gansu Power Grid is simulated by SCADA for verification. It is shown that this method can effectively classify the bus load, thereby improving the efficiency of load modeling.

    Reference
    [1] 唐秀明,袁荣湘,陈君,等.基于Carathéodory-Fejér插值定理考虑误差界的负荷建模方法[J].电工技术学报,2015,30(20):176-184.TANG Xiuming,YUAN Rongxiang,CHEN Jun,et al.A load modeling method considering error bounds based on carathéodory-Fejér interpolation theorem[J].Transactions of China Electrotechnical Society,2015,30(20):176-184.
    [2] 李尚远,冯丽,张同尊,等.一种适用于小干扰分析的在线负荷建模方法[J].电网技术,2019,43(4):1439-1446.LI Shangyuan,FENG Li,ZHANG Tongzun,et al.An online load modeling method for small interference analysis[J].Power System Technology,2019,43(4):1439-1446.
    [3] 邓鹏,刘敏.基于改进聚类和RBF神经网络的台区电网线损计算研究[J].智慧电力,2021,49(2):107-113.DENG Peng,LIU Min.Power line loss calculation in low voltage region based on improved clustering algorithm and RBF neural network[J].Smart Power,2021,49(2):107-113.
    [4] 屈星,李欣然,李培强,等.计及配电网调压的综合负荷建模[J].中国电机工程学报,2018,38(6):1695-1705+1906.QU Xing,LI Xinran,LI Peiqiang,et al.Comprehensive load modeling based on voltage regulation of distribution network[J].Proceedings of the CSEE,2018,38(6):1695-1705+1906.
    [5] 屈星,李欣然,宋军英,等.遗传算子自适应设计及其在负荷建模中的应用[J].电力系统及其自动化学报,2018,30(7):65-72.QU Xing,LI Xinran,SONG Junying,et al.Adaptive design of genetic operators and its application in load modeling[J].Proceedings of the CSU-EPSA,2018,30(7):65-72.
    [6] 孙毅,崔灿,张璐,等.智能用电非侵入式负荷监测系统研究[J].电力科学与技术学报,2019,34(2):155-160.SUN Yi,CUICan,ZHANG Lu,et al.Research on intelligent power consumption non-invasive load monitoring system[J].Journal of Electric Power Science and Technology,2019,34(2):155-160.
    [7] 程祥,李林芝,吴浩,等.非侵入式负荷监测与分解研究综述[J].电网技术,2016,40(10):3108-3117.CHENG Xiang,LI Linzhi,WU Hao,et al.Summary of non-intrusive load monitoring and decomposition research[J].Power System Technology,2016,40(10):3108-3117.
    [8] 徐青山,娄藕蝶,郑爱霞,等.基于近邻传播聚类和遗传优化的非侵入式负荷分解方法[J].电工技术学报,2018,33(16):3868-3878.XU Qingshan,LOU Oudie,ZHENG Aixia,et al.A non-intrusive load decomposition method based on neighborhood propagation clustering and genetic optimization[J].Transactions of China Electrotechnical Society,2018,33(16):3868-3878.
    [9] 肖江,Franois AUGER,荆朝霞,等.基于贝叶斯信息准则的非侵入式负荷事件检测算法[J].电力系统保护与控制,2018,46(22):8-14.XIAO Jiang,Franois AUGER,JING Zhaoxia,et al.Non-intrusive load event detection algorithm based on bayesian information criterion[J].Power System Protection and Control,2018,46(22):8-14.
    [10] 祁兵,韩璐.基于遗传优化的非侵入式居民负荷辨识算法[J].电测与仪表,2017,54(17):11-17.QI Bing,HAN Lu.A non-intrusive resident load identification algorithm based on genetic optimization[J].Electrical Measurement & Instrumentation,2017,54(17):11-17.
    [11] 孙毅,崔灿,陆俊,等.基于遗传优化的非侵入式家居负荷分解方法[J].电网技术,2016,40(12):3912-3917.SUN Yi,CUI Can,LU Jun,et al.A non-intrusive household load decomposition method based on genetic optimization[J].Power System Technology,2016,40(12):3912-3917.
    [12] 陈思运,高峰,刘烃,等.基于因子隐马尔可夫模型的负荷分解方法及灵敏度分析[J].电力系统自动化,2016,40(21):128-136.CHEN Siyun,GAO Feng,LIU Ting,et al.Load decomposition method and sensitivity analysis based on factor hidden Markov model[J].Automation of Electric Power Systems,2016,40(21):128-136.
    [13] 卢天琪.结合事件检测的HMM非侵电力负荷监测算法研究[D].武汉:华中科技大学,2017.
    [14] 单光普.基于HMM的非侵入式居民用电负荷分解研究[D].北京:华北电力大学,2018.
    [15] 华亮亮,黄伟,杨子力,等.基于DTW算法的非侵入式家居负荷行为识别方法[J].电测与仪表,2019,56(14):17-22.HUA Liangliang,HUANG Wei,YANG Zili,et al.A non-intrusive home load behavior recognition method based on DTW algorithm[J].Electrical Measurement & Instrumentation,2019,56(14):17-22.
    [16] 程瑛颖,杜杰,周全,等.基于随机矩阵理论和聚类算法的电能表运行状态评估方法[J].中国电力,2020,53(11):116-125.CHENG Yingying,DU Jie,ZHOU Quan,et al.Evaluation method for running state of electricity meters based on random matrix theory and clustering algorithm[J].Electric Power,2020,53(11):116-125.
    [17] 江帆,杨洪耕.基于广义回归神经网络的非侵入式负荷识别方法[J].电测与仪表,2020,57(3):1-6+18.JIANG Fan,YANG Honggeng.Non-intrusive load identification method based on generalized regression neural network[J].Electrical Measurement & Instrumentation,2020,57(3):1-6+18.
    [18] 任文龙,许刚.基于深度序列翻译模型的非侵入式负荷分解方法[J].电网技术,2020,44(1):27-37.REN Wenlong,XU Gang.Non-intrusive load decom-position method based on deep sequence translation model[J].Power System Technology,2020,44(1):27-37.
    [19] 汉京善,吕海平,李丹煜,等.基于GA-BP神经网络算法的输电线路舞动预警方法[J].电网与清洁能源,2021,37(4):1-7+14.HAN Jingshan,L Haiping,LI Danyu,et al.Prediction of transmission line galloping using improved BP neural network based on genetic algorithm[J].Power System and Clean Energy,2021,37(4):1-7+14.
    [20] 牟魁翌,杨洪耕.基于PLA-GDTW支持向量机的非侵入式负荷监测方法[J].电网技术,2019,43(11):4185-4193.MOU Kuiyi,YANG Honggeng.Non-intrusive load monitoring method based on PLA-GDTW support vector machine[J].Power System Technology,2019,43(11):4185-4193.
    [21] 徐振华,李欣然,钱军,等.变电站用电行业负荷构成比例的在线修正方法[J].电网技术,2010,34(7):52-57.XU Zhenhua,LI Xinran,QIAN Jun,et al.Online correction method of load composition ratio of substation power industry[J].Power System Technology,2010,34(7):52-57.
    [22] 曾兴,蔡泽祥,孙宇嫣,等.综合能源系统配用电监控业务计算负荷建模方法[J].供用电,2020,37(9):42-49+57.ZENG Xing,CAI Zexiang,SUN Yuyan,et al.Workload modeling method for power distribution monitoring business in integrated energy system[J].Distribution & Utilization,2020,37(9):42-49+57.
    [23] 林常青,上官安琪,徐箭,等.基于样本熵和支持向量机的短期风速预测模型[J].电力科学与技术学报,2014,29(4):12-17.LIN Changqing,SHANGGUAN Anqi,XU Jian,et al.Short-term wind speed prediction model based on sample entropy and support vector machine[J].Journal of Electric Power Science and Technology,2014,29(4):12-17.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

青灿,行舟,智勇,刘文飞,郝如海,马瑞.基于SVM的变电站母线日净负荷曲线大数据识别方法[J].电力科学与技术学报英文版,2022,37(6):125-131. QING Can, XING Zhou, ZHI Yong, LIU Wenfei, HAO Ruhai, MA Rui. Big data recognition method for daily net load curve of substation bus based on SVM[J]. Journal of Electric Power Science and Technology,2022,37(6):125-131.

Copy
Share
Article Metrics
  • Abstract:258
  • PDF: 1059
  • HTML: 0
  • Cited by: 0
History
  • Online: January 16,2023
Article QR Code