Multi‑agent cooperative dispatching strategy for distribution network considering shared energy storage
CSTR:
Author:
Affiliation:

(1.Economic Technology Research Institute,State Grid Fujian Electric Power Co., Ltd., Fuzhou 350011, China; 2. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

Clc Number:

TM732

  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • | | | |
  • Comments
    Abstract:

    In view of the current problems of only single operation mode, vague profit method, and low utilization rate of the energy storage business for power grid, a business operation mode combining self-operated electricity and shared energy storage is proposed. First, a multi-agent collaborative scheduling model of the power distribution network considering shared energy storage is established. This model takes into account the interests of the power distribution network, load aggregators, and energy storage providers, while effectively reducing the peak-to-valley difference of the net load and hence relieving the peak shaving pressure of the power grid. Then, the model implements a two-stage optimization. The first stage is the leasing optimization of energy storage capacity, that is, the power distribution network leases energy storage on demand for peak shaving and valley filling, minimizing leasing costs and net load variance. The second stage is multi-agent collaborative optimization, where energy storage providers arbitrage by using remaining capacity to "store at low prices and discharge at high prices" based on time-of-use electricity prices, and respond to peak shaving together with load aggregators. This minimizes the cost of the power distribution network, maximizes the benefits of load aggregators, and maximizes the arbitrage of energy storage providers, achieving mutual benefit and win-win results for all parties. Finally, the effectiveness of the proposed method is verified through example analysis.

    Reference
    [1] LI P,DARGAVILLE R,CAO Y,et al.Storage aided system property enhancing and hybrid robust smoothing for large-scale PV systems[J].IEEE Transactions on Smart Grid,2017,8(6):2871-2879.
    [2] 李焓宁,李相俊,汪湘晋,等.离网型风储荷系统建模与动态组网协调控制方法研究[J].供用电,2022,39(7):17-24. LI Hanning,LI Xiangjun,WANG Xiangjin,et al.Research on modeling and dynamic networking coordinated control method of offgrid wind storage load systems[J].Distribution & Utilization,2022,39(7):17-24.
    [3] HU M,XIAO J,CUI S,et al.Distributed real-time demand response for energy management scheduling in smart grid[J].International Journal of Electrical Power & Energy Systems,2018,99:233-245.
    [4] 杨江涛,刘佳,孙春顺,等.计及分布式电源的配电网储能配置研究[J].电力科学与技术学报,2018,33(1):108-114. YANG Jiangtao,LIU Jia,SUN Chunshun,et,al.Research on the configuration of energy storage in the distribution network counting and distributed power sources[J].Journal of Electric Power Science and Technology,2018,33(1):108-114.
    [5] 徐婉迪,魏来,罗俊,等.储能产业发展带来的能源革命及其关键管理科学问题[J].系统管理学报,2021,30(1):191-197. XU Wandi,WEI Lai,LUO Jun, et, al. Energy revolution empowered by development of energy storage industry and its key management science issues[J].Journal of Systems & Management,2021,30(1):191-197.
    [6] DAI R,ESMAEILBEIGI R,CHARKHGARD H.The utilization of shared energy storage in energy systems:a comprehensive review[J].IEEE Transactions on Smart Grid,2021,12(4):3163-3174.
    [7] CHAKRABORTY P,BAEYENS E,POOLLA K,et al.Sharing storage in a smart grid:a coalitional game approach[J].IEEE Transactions on Smart Grid,2019,10(4):4379-4390.
    [8] 郝艺博,杜锡力,李笑竹,等.考虑储能性能差异的新能源场站群共享储能交易模式[J].发电技术,2022,43(5):687-697. HAO Yibo,DU Xili,LI Xiaozhu,et al.Shared energy storage trading mode of new energy station group considering energy storage performance difference[J].Power Generation Technology,2022,43(5):687-697.
    [9] 闫东翔,陈玥.共享储能商业模式和定价机制研究综述[J].电力系统自动化,2022,46(23):178-191. YAN Dongxiang,CHEN Yue.Review on business model and pricing mechanism for shared energy storage[J].Automation of Electric Power Systems,2022,46(23):178-191.
    [10] 刘静琨,张宁,康重庆.电力系统云储能研究框架与基础模型[J].中国电机工程学报,2017,37(12):3361-3371+3663. LIU Jingkun, ZHANG Ning, KANG Chongqing. Research framework and basic models for cloud energy storage in power system[J]. Proceedings of the CSEE, 2017, 37(12): 3361-3371+3663.
    [11] 康重庆,刘静琨,张宁.未来电力系统储能的新形态:云储能[J].电力系统自动化,2017,41(21):2-8+16. KANG Chongqing, LIU Jingkun, ZHANG Ning. A new form of energy storage in future power system: cloud energy storage[J]. Automation of Electric Power Systems, 2017, 41(21): 2-8+16.
    [12] 麻秀范,孟祥玉,朱秋萍,等.计及通信负载的5G基站储能调控策略[J].电工技术学报,2022,37(11):2878-2887. MA Xiufan,MENG Xiangyu,ZHU Qiuping,et al.Control strategy of 5g base station energy storage considering communication load[J].Transactions of China Electrotechnical Society,2022,37(11):2878-2887.
    [13] 任大伟,侯金鸣,肖晋宇,等.支撑双碳目标的新型储能发展潜力及路径研究[J].中国电力,2023,56(8):17-25. REN Dawei,HOU Jinming,XIAO Jinyu,et al.Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J].Electric Power,2023,56(8):17-25.
    [14] 李咸善,解仕杰,方子健,等.多微电网共享储能的优化配置及其成本分摊[J].电力自动化设备,2021,41(10):44-51. LI Xianshan, XIE Shijie, FANG Zijian, et al. Optimal configuration of shared energy storage for multi-microgrid and its cost allocation[J]. Electric Power Automation Equipment, 2021, 41(10): 44-51.
    [15] 李咸善,方子健,李飞,等.含多微电网租赁共享储能的配电网博弈优化调度[J].中国电机工程学报,2022,42(18):6611-6625. LI XianShan, FANG ZiJian, LI Fei, et, al. Game-based optimal dispatching strategy for distribution network with multiple microgrids leasing shared energy storage[J], Proceedings of the CSEE, 2022, 42(18):6611-6625.
    [16] 李淋,徐青山,王晓晴,等.基于共享储能电站的工业用户日前优化经济调度[J].电力建设,2020,41(5):100-107. LI Lin, XU Qingshan, WANG Xiaoqing, et, al. Optimal economic scheduling of industrial customers on the basis of sharing energy-storage station[J]. Electric Power Construction, 2020, 41(5): 100-107.
    [17] LONGBO M,SHUAI T,SHU L,et al.Operation characteristics and key technology analysis of high-penetration renewable energy microgrid[J].IOP Conference Series Earth and Environmental Science,2021,657(1):012068.
    [18] 张超,贾长杰,何文俊,等.基于共享聚合相变储能系统的区域联合削峰填谷策略[J]. 电力科学与技术学报,2022,37(5):25-34. ZHANG Chao,JIA Changjie,HE Wenjun,et al.Regional-joint peak-load shifting strategy based on the aggregated systems of sharing phase change material energy storage[J].Journal of Electric Power Science and Technology, 2022,37(5):25-34.
    [19] 吴倩,王洋,王琳媛,等.计及波动平抑与经济性的风光储系统中混合储能容量优化配置[J].电测与仪表,2022,59(4):112-119. WU Qian,WANG Yang,WANG Linyuan,et al.Optimal capacity allocation of hybrid energy storage system in wind-solar-batterysystem considering fluctuation smoothing and economy[J].Electrical Measurement & Instrumentation,2022,59(4):112-119.
    [20] 唐成虹,董存,戴睿鹏,等.基于模型预测控制的光伏场站快速协同无功电压控制[J].电力系统保护与控制,2023,51(17):80-90. TANG Chenghong,DONG Cun,DAI Ruipeng,et al.Fast cooperative reactive voltage control for photovoltaic stations based on model predictive control[J].Power System Protection and Control,2023,51(17):80-90.
    [21] 叶耀,龚锦霞,李琛舟,等.一种考虑分布式电源的配电自动化系统规划方法[J].智慧电力,2022,50(10):109-115. YE Yao,GONG Jinxia,LI Chenzhou,et al.A planning method for distribution automation system considering distributed generation[J].Smart Power,2022,50(10):109-115.
    [22] 张冲,荣娜.基于改进粒子群算法的新能源侧储能容量配置[J].电网与清洁能源,2022,38(10):98-105. ZHANG Chong,RONG Na.Energy storage capacity allocation of renewable energy side based on improved particle swarm optimization[J].Power System and Clean Energy,2022,38(10):98-105.
    [23] JAIN H,DEB K.An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach,part II:handling constraints and extending to an adaptive approach[J].IEEE Transactions on Evolutionary Computation,2014,18(4):602-622.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张林垚,吴桂联,廖锦霖,胡 鑫,刘丽军.考虑共享储能的配电网多主体协同调度策略[J].电力科学与技术学报英文版,2024,39(2):44-52. ZHANG Linyao, WU Guilian, LIAO Jinlin, HU Xin, LIU Lijun. Multi‑agent cooperative dispatching strategy for distribution network considering shared energy storage[J]. Journal of Electric Power Science and Technology,2024,39(2):44-52.

Copy
Share
Article Metrics
  • Abstract:197
  • PDF: 1102
  • HTML: 0
  • Cited by: 0
History
  • Online: May 29,2024
Article QR Code