Optimal estimation of cell SOC in energy storage container with LSTM‑EKF algorithm
CSTR:
Author:
Affiliation:

(1.Economic and Technical Research Institute,State Grid Hubei Electric Power Co., Ltd., Wuhan 430061,China;2.College of Electrical and Electronic Engineering, Wuhan Institute of Technology, Wuhan 430073, China)

Clc Number:

TM912

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • | | | |
  • Comments
    Abstract:

    Energy storage container is the core equipment of a power plant for lithium battery energy storage . Each container is composed of thousands of cells connected in series and parallel. Therefore, the accurate estimation of the state of charge (SOC) of lithium batteries in container cores becomes the core and basic parameter to characterize the operation of a power plant for energy storage. Moreover, in order to assist the new energy to be connected to the grid efficiently, the operating state of the energy storage system is randomness, fluctuation and uncertainty, which requires higher accuracy of the cell state estimation. In this paper, the Thevenin model of battery is firstly established on the basis of the Kirchhoff's circuit laws. The state and observation equations of the system are listed according to the ampere-time integration method, and then as the study object for the extended Kalman filter (EKF) algorithm. The EKF algorithm is used to update and iterate the estimated SOC of battery. The updated error values of the Kalman matrix and state variables derived from the EKF algorithm, and the battery data under UDDS conditions are as a training data set for long-term and short-term memory (LSTM) neural network algorithm. The joint algorithm of LSTM-EKF is thus completed to achieve an optimized estimation of the SOC of batteries in container cores. The SOC error can be reduced to less than 1% by the proposed LSTM-EKF algorithm. The optimization algorithm applied in the safe operation and monitoring platform of energy storage power station is finally introduced.

    Reference
    [1] 赵冬梅,徐辰宇,陶然,等.多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J].中国电机工程学报,2023,43(5):1776-1799. ZHAO Dongmei, XU Chenyu, TAO Ran, et al. Review on flexible regulation of multivariate distributed energy storage on distribution side of new power system[J]. Proceedings of the CSEE, 2023,43(5):1776-1799.
    [2] 黎冲,王成辉,王高,等.锂电池SOC估计的实现方法分析与性能对比[J].储能科学与技术,2022,11(10):3328-3344. LI Chong, WANG Chenghui, WANG Gao, et al.Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022,11(10):3328-3344.
    [3] 庞辉,郭龙,武龙星,等.考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J].电工技术学报,2021,36(10):2179-2189. PANG Hui, GUO Long, WU Longxing, et al. An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J].Transactions of China Electrotechnical Society,2021,36 (10):2178-2189.
    [4] 顾菊平,蒋凌,张新松,等.基于特征提取的锂离子电池健康状态评估及影响因素分析[J].电工技术学报,2023,38(19):5330-5342. GU Juping, JIANG Ling, ZHANG Xinsong, et al.Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J].Transactions of China Electrotechnical Society, 2023, 38 (19): 5330-5342.
    [5] 李正力,李肖辉,王京,等.锂离子电池储能电站热失控预警与防护研究进展[J]. 高压电器,2024,60(1):87-99. LI Zhengli,LI Xiaohui,WANG Jing,et al. Research progress on thermal runaway warning and protection of lithium-ion battery in energy storage power station[J]. High Voltage Apparatus,2024,60(1):87-99.
    [6] 张江丰,苏烨,孙坚栋,等.电网侧电化学储能电站AGC控制策略优化及试验分析[J].电力科学与技术学报,2022,37(2):173-180. ZHANG Jiangfeng, SU Ye, SUN Jiandong, et al.Optimization and test analysis of AGC control strategy for the grid-side electrochemical energy storage power station[J]. Journal of Electric Power Science and Technology, 2022,37 (2): 173-180.
    [7] 王义军,左雪.锂离子电池荷电状态估算方法及其应用场景综述[J].电力系统自动化,2022,46(14):193-207. WANG Yijun, ZUO Xue. Review on estimation methods for state of charge of lithium-ion battery and their application scenarios[J].Automation of Electric Power Systems, 2022,46 (14): 193-207.
    [8] MENG J,RICCO M,LUO G,et al.An overview and comparison of online implementable SOC estimation methods for lithium-ion battery[J]. IEEE Transactions on Industry Applications,2018,54(2):1583-1591.
    [9] LIPU M S H,HANNAN M A,HUSSAIN A,et al. Data-driven state of charge estimation of lithium-ion batteries:algorithms,implementation factors,limitations andfuture trends[J]. Journal of Cleaner Production,2020,277:124110.
    [10] XIONG R, GONG X, MI C C, et al. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter[J]. Journal of Power Sources, 2013, 243(6):805-816.
    [11] 巫春玲,胡雯博,孟锦豪,等.基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24):5165-5175. WU Chunling, HU Wenbo, MENG Jinghao, et al. State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J].Transactions of China Electrotechnical Society,2021, 36 (24): 5165-5175.
    [12] 耿攀,许梦华,薛士龙.基于LSTM循环神经网络的电池SOC预测方法[J].上海海事大学学报,2019,40(3):120-126. GENG Pan, XU Menghua, XUE Shilong.Battery SOC estimation method based on LSTM recurrent neural network[J]. Journal of Shanghai Maritime University, 2019,40 (3): 120-126.
    [13] LI N, ZHANG Y, HE F, et al. Review of lithium-ion battery state of charge estimation[J].Global Energy Interconnection, 2021,4(6):619-630.
    [14] 刘志聪,张彦会.锂离子电池参数辨识及荷电状态的估算[J].储能科学与技术,2022,11(11):3613-3622. LIU Zhichong, ZHANG Yanhui. Parameter identification and state of charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022,11(11):3613-3622.
    [15] SUN C, LIN H, CAI H, et al. Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter[J]. Electrochimica Acta,2021,387:138501.
    [16] 胡文.基于温度影响的锂离子电池建模及EKF算法下的荷电状态估算研究[D].徐州:中国矿业大学,2020. HU Wen.Study on modeling of lithium-ion battery based on temperature effect and SOC estimation based on EKF algorithm[D].Xuzhou: China University of Mining and Technology, 2020.
    [17] YANG F, XING Y, WANG D,et al. A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile[J]. Applied Energy 2016;164:387-399.
    [18] CHAOUI H, IBE-EKEOCHA C C. State of charge and state of health estimation for lithium batteries using recurrent neural net-works[J]. IEEE Transactions on Vehicular Technology, 2017,66(10):8773-8783.
    [19] 潘锦业,王苗苗,阚威,等.基于Adam优化算法和长短期记忆神经网络的锂离子电池荷电状态估计方法[J].电气技术,2022,23(4):25-30+36. PAN Jingye,WANG Miaomiao,KAN Wei,et al.State of charge estimation of lithium-ion battery based on Adam optimization algorithm and long short-term memory neural network[J].Electrical Engineering,2022,23(4):25-30+36.
    [20] 杜生鑫,金阳.锂离子电池储能舱风冷散热数值模拟与优化[J]. 电力工程技术,2022,41(6):58-64. DU Shengxin, JIN Yang. Numerical simulation and optimization of air cooling heat dissipation of lithium-ion battery storage cabin[J]. Electric Power Engineering Technology, 2022,41(6): 58-64.
    [21] CHUNG D W,KO J H,YOON K Y. State of charge estimation of lithium ion batteries using LSTM deep learning method[J].Journal of Electrical Engineering &Technology,2022,17(3):1931-1945.
    [22] 朱文凯,周星,刘亚杰,等.基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法[J].储能科学与技术,2023,12(2):570-578. ZHU Wenkai, ZHOU Xing, LIU Yajie, et al. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network[J]. Energy Storage Science and Technology,2023,12(2):570-578.
    [23] YANG F,ZHANG S,LI W,et al. State-of-charge estimation of lithium-ion batteries using LSTM and UKF[J]. Energy,2020,201:20201808608572.
    [24] 舒征宇,翟二杰,李镇翰,等.基于Dropout优化算法和 LSTM 的铅酸蓄电池容量预测[J].电源学报,2023,21(5):173-181. SHU Zhengyu, ZHAI Erjie, LI Zhenhan, et al. Prediction of lead-acid battery capacity based on dropout optimization algorithm and LSTM[J].Journal of Power Supply, 2023,21(5):173-181.
    [25] 欧旭鹏,唐云,张凯,等.基于CEEMDAN-IDOA-BiLSTM的超短期风电功率预测[J].电网与清洁能源,2023,39(11):142-150. OU Xupeng,TANG Yun,ZHANG Kai,et al. The ultra short term wind power prediction based on CEEMDAN-IDOA-BiLSTM[J].Power System and Clean Energy,2023,39(11):142-150.
    [26] CHEMALI E,KOLLMEYER P J,PREINDL M,et al. Long short-term memory-networks for accurate state of charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics,2018,65(8):6730-6739.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘 巨,任羽纶,易柏年,董 哲,余 轶,熊 志,余紫荻,王映祺,刘 健. LSTM‑EKF算法实现储能集装箱电芯SOC的优化估计[J].电力科学与技术学报英文版,2024,39(2):198-206. LIU Ju, REN Yulun, YI Bonian, DONG Zhe, YU Yi, XIONG Zhi, YU Zidi, WANG Yingqi, LIU Jian. Optimal estimation of cell SOC in energy storage container with LSTM‑EKF algorithm[J]. Journal of Electric Power Science and Technology,2024,39(2):198-206.

Copy
Share
Article Metrics
  • Abstract:646
  • PDF: 1121
  • HTML: 0
  • Cited by: 0
History
  • Online: May 29,2024
Article QR Code