Transformer fault diagnosis based on DGA and TPE‑LightGBM
CSTR:
Author:
Affiliation:

(Department of Energy and Electrical Engineering, Nanchang University, Nanchang 330031, China)

Clc Number:

TM721

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • | | | |
  • Comments
    Abstract:

    Dissolved gas analysis (DGA) is significant for early warning and diagnosis of transformer faults. To enhance the accuracy and reliability of transformer fault diagnosis, a transformer fault diagnosis method is proposed based on the tree-structured parzen estimator (TPE) algorithm to optimize the light gradient boosting machine (LightGBM). Firstly, a 16-dimensional DGA feature set including gas ratios and encodings in oil is established, and the least absolute shrinkage and selection operator (LASSO) algorithm is used to select effective feature quantities for transformer fault diagnosis. Secondly, a transformer fault diagnosis method based on LightGBM is constructed, and the TPE algorithm is introduced to optimize the parameters of the LightGBM diagnosis model, forming an optimal fault diagnosis model. Finally, evaluation metrics such as accuracy, recall, and F1 score are selected to assess the performance of the proposed diagnosis model. The research results indicate that the average accuracy of TPE-LightGBM is 90.23%, and its diagnostic accuracy and robustness are superior to algorithms such as RF and XGBoost. At the same time, compared with the commonly used three-ratio method in practice, the proposed method shows significantly improved accuracy and reliability. This method can effectively enhance the level of intelligent operation and maintenance of power transformers.

    Reference
    [1] 周秀,怡恺,李刚,等.基于邻域粗糙集与AMPOS-ELM的变压器DGA故障诊断[J].电力科学与技术学报,2022,37(3):157-164. ZHOU Xiu,YI Kai,LI Gang,et al.A transformer DGA fault diagnosis approach based on neighborhood rough set and AMPOS-ELM[J].Journal of Electric Power Science and Technology,2022,37(3):157-164.
    [2] 赵洪山,常杰英,曲岳晗,等.基于二元非线性Wiener随机过程的变压器油纸绝缘剩余寿命预测方法[J].电工技术学报,2023,38(15):4040-4049. ZHAO Hongshan,CHANG Jieying,QU Yuhan,et al.Residual life prediction method of transformer oil-paper insulation based on binary nonlinear Wiener random process[J].Transactions of China Electrotechnical Society,2023,38(15):4040-4049.
    [3] 何宁辉,朱洪波,李秀广,等.基于贝叶斯网络和假设检验的变压器故障诊断[J].电力科学与技术学报,2021,36(6):20-27. HE Ninghui,ZHU Hong-Bo,LI Xiugguang,et al.Transformer fault diagnosis based on Bayesian networks and hypothesis ttesting[J].Journal of Electric Power Science and Technology,2021,36(6):20-27.
    [4] 廖才波,杨金鑫,邱志斌,等.一种基于夏普利值及油中溶解气体分析的可解释变压器故障诊断方法[J].电网技术,2024,48(4):1752-1762. LIAO Caibo,YANG Jinxin,QIU Zhibin,et al.An interpretable transformer fault diagnosis method based on SHAP value and dissolved gas analysis of transformer oil[J].Power System Technology,2024,48(4):1752-1762.
    [5] 朱庆东,朱文兵,王浩哲,等.基于油中溶解气监测的变压器在线半监督故障诊断方法研究[J].电网技术,2023,47(3):1031-1037. ZHU Qingdong,ZHU Wenbing,WANG Haozhe,et al.Online semi-supervised fault diagnosis of transformer based on dissolved gas in oil[J].Power System Technology,2023,47(3):1031-1037.
    [6] 马鑫,尚毅梓,胡昊,等.基于数据特征增强和残差收缩网络的变压器故障识别方法[J].电力系统自动化,2022,46(3):175-183. MA Xin,SHANG Yizi,HU Hao,et al.Identification method of transformer fault based on data feature enhancement and residual shrinkage network[J].Automation of Electric Power Systems,2022,46(3):175-183.
    [7] ROGRTS R R.IEEE and IEC codes to interpret incipient faults in transformers,using gas in oil analysis[J].IEEE Transactions on Electrical Insulation,1978,13(5):349-354.
    [8] DUVAL M.Dissolved gas analysis:it can save your transformer[J].IEEE Electrical Insulation Magazine,1989,5(6):22-27.
    [9] DUVAL M,DEPABLA A.Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases[J].IEEE Electrical Insulation Magazine,2001,17(2):31-41.
    [10] 盛戈皞,钱勇,罗林根,等.面向新型电力系统的数字化电力设备关键技术及其发展趋势[J].高电压技术,2023,49(5):1765-1778. SHENG Geha,QIAN Yong,LUO Lingen,et al.Key technologies and development trends of digital power equipment for new type power system[J].High Voltage Engineering,2023,49(5):1765-1778.
    [11] 廖才波,杨金鑫,胡雄,等.数据与经验混合驱动下的变压器故障分层诊断方法[J].高电压技术,2023,49(5):1841-1850. LIAO Caibo,YANG Jinxin,HU Xiong,et al.Hierarchical diagnosis method for transformer faults driven by mixed data and experience[J].High Voltage Engineering,2023,49(5):1841-1850.
    [12] 李佳迪,汤会增,相黎阳,等.基于5G与AR技术的特高压GIS数字化运检平台设计与研究[J].高压电器,2023,59(12):83-93. LI Jiadi,TANG Huizeng,XIANG Liyang,et al.Design and study on digital operation and inspection platform of UHV GIS based on 5G and AR technology[J].High Voltage Apparatus,2023,59(12):83-93.
    [13] 陆云才,廖才波,李群,等.基于声纹特征和集成学习的变压器缺陷诊断方法[J].电力工程技术,2023,42(5):46-55. LU Yuncai,LIAO Caibo,LI Qun,et al.Transformer fault diagnosis method based on voiceprint feature and ensemble learning[J].Electric Power Engineering Technology,2023,42(5):46-55.
    [14] 周晓华,冯雨辰,陈磊,等.改进秃鹰搜索算法优化SVM的变压器故障诊断研究[J].电力系统保护与控制,2023,51(8):118-126. ZHOU Xiaohua,FENG Yuchen,Chen Lei,et al.Transformer fault diagnosis based on SVM optimized by the improved bald eagle search algorithm[J].Power System Protection and Control,2023,51(8):118-126.
    [15] 郑尚直,仲林林,王同磊,等.基于改进半监督阶梯网络的有载分接开关故障诊断[J].电力工程技术,2023,42(2):197-205. ZHENG Shangzhi,ZHONG Linlin,WANG Tonglei,et al.Fault diagnosis method for OLTC based on improved semi-supervised ladder networks[J].Electric Power Engineering Technology,2023,42(2):197-205.
    [16] HAQUE N,JAMSHED A,CHATTETJRR K,et al.Accurate sensing of power transformer faults from dissolved gas data using random forest classifier aided by data clustering method[J].IEEE Sensors Journal,2022,22(6):5902-5910.
    [17] 王雪,韩韬.基于贝叶斯优化随机森林的变压器故障诊断[J].电测与仪表,2021,58(6):167-173. WANG Xue,HAN Tao.Transformer fault diagnosis based on Bayesian optimized random forest[J].Electrical Measurement & Instrumentation,2021,58(6):167-173.
    [18] 马红明,李倩,陶鹏,等.基于贝叶斯与数据驱动的智能电能表状态感知技术研究[J].电测与仪表,2022,59(2):176-182. MA Hongming,LI Qian,TAO Peng,et al.Research on the state perception technology of smart meters based on Bayesianand data-driven[J].Electrical Measurement & Instrumentation,2022,59(2):176-182.
    [19] 张又文,冯斌,陈页,等.基于遗传算法优化XGBoost的油浸式变压器故障诊断方法[J].电力自动化设备,2021,41(2):200-206. ZHANG Youwen,FENG Bin,CHEN Ye,et al.Fault diagnosis method for oil-immersed transformer based on XGBoost optimized by genetic algorithm[J].Electric Power Automation Equipment,2021,41(2):200-206.
    [20] 谢桦,陈俊星,赵宇明,等.基于SMOTE和决策树算法的电力变压器状态评估知识获取方法[J].电力自动化设备,2020,40(2):137-142. XIE Hua,CHEN Junxing,ZHAO Yuming,et al.Knowledge acquisition method of power transformer condition assessment based on SMOTE and decision tree algorithm[J].Electric Power Automation Equipment,2020,40(2):137-142.
    [21] 张国治,陈康,方荣行,等.基于DGA与鲸鱼算法优化Logit Boost-决策树的变压器故障诊断方法[J].电力系统保护与控制,2023,51(7):63-72. ZHANG Guozhi,CHEN Kang,FANG Rongxing,et al.Transformer fault diagnosis based on DGA and a whale algorithm optimizing a LogitBoost-decision tree[J].Power System Protection and Control,2023,51(7):63-72.
    [22] 卢雪琴,李长安,吴忠强.基于鲸鱼算法优化极限学习机的微电网故障诊断[J].智慧电力,2022,50(2):15-21. LU Xueqin,LI Changan,WU Zhongqiang.Microgrid fault diagnosis based on extreme learning machine optimized by whale algorithm[J].Smart Power,2022,50(2):15-21.
    [23] TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,1996,58(1):267-288.
    [24] MA X,SHA J,WANG D,et al.Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGBoost algorithms according to different high dimensional data cleaning[J].Electronic Commerce Research and Applications,2018,31:24-39.
    [25] 程路明,楼平,诸骏豪,等.基于APRIORI-贝叶斯优化XGBoost的电力通信网根告警预测[J].电力建设,2022,43(1):113-121. CHENG Luming,LOU Ping,ZHU Junhao,et al.Root alarm prediction of power communication network applying APRIORI-Bayesian optimization XGBoost[J]. Electric Power Construction,2022,43(1):113-121.
    [26] BERGSTRA J,BARDENT R,BENGIO Y,et al.Algorithms for hyper-parameter optimization[C]//24th International Conference on Neural Information Processing Systems,Guangzhou,China,2017.
    [27] 尹金良.基于相关向量机的油浸式电力变压器故障诊断方法研究[D].北京:华北电力大学,2013. YIU Jinliang.Study on oil?immersed power transformer fault diagnosis based on relevance vector machine[D].Beijing:North China Electric Power University,2013.
    [28] DUVAL M,ALZIEU E,BOCSI I,et al.Advances in DGA interpretation[R].Paris,France:CIGRE,2019.
    [29] 孙才新.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社,2003:78-82. SUN Caixin.On-line monitoring and fault diagnosis technology of gas in oil of electrical equipment[M].Beijing:China Electric Power Press,2003:78-82.
    [30] DL/T 722—2014.变压器油中溶解气体分析和判断导则[S]. DL/T 722—2014.Guide to the analysis and the diagnosis of gases dissolved in trans-former oil[S].
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

杨金鑫,廖才波,胡 雄,朱文清,张 旭,刘 邦.基于DGA与TPE‑LightGBM的变压器故障诊断[J].电力科学与技术学报英文版,2024,39(4):70-77. YANG Jinxin, LIAO Caibo, HU Xiong, ZHU Wenqing, ZHANG Xu, LIU Bang. Transformer fault diagnosis based on DGA and TPE‑LightGBM[J]. Journal of Electric Power Science and Technology,2024,39(4):70-77.

Copy
Share
Article Metrics
  • Abstract:319
  • PDF: 1098
  • HTML: 0
  • Cited by: 0
History
  • Online: September 10,2024
Article QR Code