Risk zone assessment of rainstorm induced waterlogging associated outage of distribution system with consideration of micro‑topography
CSTR:
Author:
Affiliation:

(1.Electric Power Research Institute, Guangxi Power Grid Co., Ltd., Nanning 530023, China;2.Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Nanning 530023, China;3.Guangxi Power Corporation, Naninng Power Supply Bureau Co., Ltd., Nanning 530029, China)

Clc Number:

TM863

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    Influenced by climate change, heavy rainfall and waterlogging have shown an increasing trend in recent years. The distribution system with a small power supply radius and insufficient flexibility in location selection is prone to large-scale power outages caused by waterlogging. Analysis points out that due to the lack of detailed records of waterlogging levels, there is a benchmark missing problem in the planning and construction of distribution systems in terms of waterlogging protection. Therefore, referring to disaster prevention methods such as ice disasters in power systems, and based on the analysis of storm inundation using a two-dimensional hydrodynamic model, this study proposes a method for delineating and differentially planning power outage risk areas in distribution systems due to rainstorm and waterlogging, considering the impact of micro-topography. Firstly, extreme rainfall for different return periods is estimated based on the extreme value distribution model, and then combined with geographic information for two-dimensional hydrodynamic simulation to obtain inundation maps, including inundation scope and depth, for extreme rainfall with a 50-year return period. Secondly, considering the construction standards of distribution terminals such as distribution transformers and switch stations, power outage risks corresponding to different inundation depths are set, and then a risk level map of power outages in the distribution system due to rainstorm and waterlogging is drawn. This provides a basis for setting different foundation heights for distribution terminals in different risk areas, enhancing their resilience to rainstorm and flood disasters. Finally, the effectiveness of the proposed method is verified through simulation analysis based on data from Nanning.

    Reference
    [1] IPCC.Climate change 2021:the physical science basis[R].Cambridge,United Kingdom and New York:Cambridge University Press,2021:193-194.
    [2] HINES P,APT J,TALUKDAR S.Large blackouts in North America:historical trends and policy implications[J].Energy Policy,2009,37:5249-5259.
    [3] DUAN X,SU S.Self-organized criticality in time series of power systems fault,its mechanism,and potential application[J].IEEE Transactions on Power Systems,2010,25(4):1857-1864.
    [4] 焦嘉凝,柳璐,张天宇,等. 台风灾害下多阶段协同的受端电网弹性提升策略[J]. 电力系统自动化,2023,47(12):9-18. JIAO Jianing,LIU Lu,ZHANG Tianyu,et al.Resilience enhancement strategy with multi-stage collaboration for receiving-end grid under typhoon disaster[J].Automation of Electric Power Systems,2023,47(12):9-18.
    [5] 周毅,秦康平,孙近文,等.台风气象环境电网设备风险量化预警及其N-m故障处置预案在线生成方法[J].上海交通大学学报,2021,55(2):22-30. ZHOU Yi,QIN Kangping,SUN Jinwen,et al.Real-time risk evaluation method of power system equipment and N-m fault contingency plan generation under typhoon meteorological environment[J].Journal of Shanghai Jiaotong University,2021,55(2):22-30.
    [6] 王振浩,罗剑潇,成龙,等.面向台风天气下主动配电网韧性提升的改进分级减载策略[J].电力系统保护与控制,2023,51(22):34-48. WANG Zhenhao,LUO Jianxiao,CHENG Long,et al.Improved graded load reduction strategy for resilience enhancement of an active distribution network in a typhoon[J].Power System Protection and Control,2023,51(22):34-48.
    [7] 鲍捷,王昕,张峰,等.基于雷电定位数据驱动的紧密输电通道连续雷击跳闸预警方法[J].电网技术,2022,46(3):1194-1205. BAO Jie,WANG Xin,ZHANG Feng.Data-driven early warning for continuous lightning trip-out of compact power corridors based on lightning location data[J].Power System Technology,2022,46(3):1194-1205.
    [8] 胡建平,陆佳政,方针,等.自然环境下输电导线同时带电压和电流覆冰试验研究[J].高电压技术,2019,45(3):760-767. HU Jianping,LU Jiazheng,Fang Zhen,et al.Experimental study on icing accretion of transmission conductor with simultaneous voltage and current under natural environment[J].High Voltage Engineering,2019,45(3):760-767.
    [9] 马富齐,王波,董旭柱,等.面向输电线路覆冰厚度辨识的多感受野视觉边缘智能识别方法研究[J].电网技术,2021,45(6):2161-2169. MA Fuqi,WANG Bo,DONG Xuzhu,et al.Receptive field vision edge intelligent recognition for ice thickness identification of transmission line[J].Power System Technology,2021,45(6):2161-2169.
    [10] 黄道春,范建斌,王平,等.极端环境条件下输变电设备空气间隙绝缘特性研究现状及展望[J].高电压技术,2023,49(5):1892-1906. HUANG Daochun,FAN Jianbin,WANG Ping,et al.Current status and future prospects of transmission and transformation equipment air gap insulation characteristics under extreme natural environmental conditions[J].High Voltage Engineering,2023,49(5):1892-1906.
    [11] 艾欣,周志宇.山火灾害下电网输电线路关键性评估方法[J].高电压技术,2018,44(8):2433-2441. AI Xin,ZHOU Zhiyu.Key transmission-line evaluation method for power grid under wildfire disasters[J].High Voltage Engineering,2018,44(8):2433-2441.
    [12] 李丹,贾伯岩,马天祥,等.考虑弹性提升的城市电—气互联能源系统扩展规划[J].电力科学与技术学报,2022,37(6):35-45. LI Dan,JIA Boyan,MA Tianxiang,et al.Expansion planning of urban power-gas interconnection energy system considering resilience enhancement[J].Journal of Electric Power Science and Technology,2022,37(6):35-45.
    [13] MA S,CHEN B,WANG Z.Resilience enhancement strategy for distribution systems under extreme weather events[J].IEEE Transactions on Smart Grid,2018,9(2):1442-1451.
    [14] 黎灿兵,梁锦照.电网差异化规划新方法[J].电力系统自动化,2009,33(24):11-15. LI Canbing,LIANG Jinzhao.A novel method of power grid differential planning[J].Automation of Electric Power Systems,2009,33(24):11-15.
    [15] 国家电网公司.国家电网公司电网风区分布图(2020年版)[M].北京:中国电力出版社,2021:61. State Grid Corporation of China.Extreme wind map of SGCC(2020 edition)[M].Beijing:China Electric Power Press,2021:61.
    [16] 国家电网公司.国家电网公司电网冰区分布图(2020年版)[M].北京:中国电力出版社,2021:40. State Grid Corporation of China.Extreme icing map of SGCC(2020 edition)[M].Beijing:China Electric Power Press,2021:40.
    [17] 吴勇军,薛禹胜,谢云云,等.台风及暴雨对电网故障率的时空影响[J].电力系统自动化,2016,40(2):20-29+83. WU Yongjun,XUE Yusheng,XIE Yunyun,et al.Space-time impact of typhoon and rainstorm on power grid fault probability[J].Automation of Electric Power Systems,2016,40(2):20-29+83.
    [18] 邓创,刘友波,刘俊勇,等.考虑降雨诱发次生地质灾害的电网风险评估方法[J].电网技术,2016,40(12):3825-3834. DENG Chuang,LIU Youbo,LIU Junyong,et al.A risk assessment method of power grid considering secondary geological hazards caused by rainfall weather[J].Power System Technology,2016,40(12):3825-3834.
    [19] 吴颖晖,徐硕,丁宇海,等.基于FloodArea的台州10 kV配网设施暴雨灾害临界雨量研究[J].电力系统保护与控制,2017,45(20):129-136. WU Yinghui,XU Shuo,DING Yuhai,et al.Flash flood critical rainfall research of 10 kV electric distribution network infrastructure based on FloodArea model in Taizhou[J].Power System Protection and Control,2017,45(20):129-136.
    [20] 刘振亚.国家电网公司配电网工程典型设计10 kV配电站房分册[M].北京:中国电力出版社,2016:287-288. LIU Zhengya,State grid corporation distribution network project typical design 10 kV distribution station room sub-book[M].Beijing:China Electric Power Press,2016:287-288.
    [21] DL/T 5630—2021.输变电工程防灾减灾设计规程[S]. DL/T 5630—2021.Code for design of disaster prevention and mitigation of power transmission and transformation projects[S].
    [22] 梁振锋,闫俊杰,李江锋,等.极端暴雨灾害下城市配电网风险评估方法[J].电网技术,2023,47(10):4180-4190. LIANG Zhenfeng,YAN Junjie,LI Jiangfeng,et al.Risk assessment method of urban distribution network under extreme rainstorm disasters[J].Power System Technology,2023,47(10):4180-4190.
    [23] 张晓涵,桑国庆.SCS-CN模型在小流域产流计算中的应用[J].人民黄河,2022,44(5):35-39+45. ZHANG Xiaohan,SANG Guoqing.Application of SCS-CN model in runoff calculation of small watershed[J].Yellow River,2022,44(5):35-39+45.
    [24] 薛丰昌,朱一晗,顾人颖,等.Floodarea模型的城市内涝可视化数值模拟[J].测绘科学,2020,45(8):181-187+198. XUE Fengchang,ZHU Yihan,GU Rengying,et al,Visual numerical simulation of urban waterlogging based on Floodarea model[J].Science of Surveying and Mapping,2020,45(8):181-187+198.
    [25] TYRNA B,ASSMANN A,FRITSCH K,et al.Large scale high resolution pluvial flood hazard mapping using the raster-based hydrodynamic two dimensional model FloodArea HPC[J].Journal of Flood Risk Management,2018,11:S1024-S1037.
    [26] 丁裕国,江志红.极端气候研究方法导论:诊断及模拟预测[M].北京:气象出版社,2009:183-192. DING Yuguo,JIANG Zhihong,Introduction to extreme climate research methods:diagnosis and simulation and prediction[M].Beijing:Meteorological Press,2009:183-192.
    [27] 宋明明,张建云,刘艳丽,等.南方典型城市化流域降雨极值及概率特征研究[J].水力发电学报,2021,40(9):1-13. SONG Mingming,ZHANG Jianyun,LIU Yanli,et al.Evolution and probability distribution of precipitation extreme values in typical urbanized basin in southern China[J].Journal of Hydroelectric Engineering,2021,40(9):1-13.
    [28] 李宏男,王杨,伊廷华.极值风速概率方法研究进展[J].自然灾害学报,2009,18(2):15-26. LI Hongnan,WANG Yang,YI Tinghua.Advance in research on extreme wind speed models[J].Journal of Natural Disasters,2009,18(2):15-26.
    [29] 刘敏,方如康.现代地理科学词典[M].北京:科学出版社,2009:182-183. LIU Min,FANG Rukang.Dictionary of modern geographical sciences[M].Beijing:Science Press,2009:182-183.
    [30] 周健民,沈仁芳.土壤学大辞典[M].北京:科学出版社,2013:10. ZHOU Jianmin,SHEN Renfang.Dictionary of soil science[M].Beijing:Science Press,2013:10.
    [31] GB 50014—2021.室外排水设计标准[S]. GB 50014—2021.Outdoor drainage design standard[S].
    Related
    Cited by
Get Citation

王 乐,唐 捷,黄远飞,王 珂,简曾鸿.考虑微地形的配电系统雨涝淹没停电风险区划分方法[J].电力科学与技术学报英文版,2024,39(4):84-92. WANG Le, TANG Jie, HUANG Yuanfei, WANG Ke, JIAN Zenghong. Risk zone assessment of rainstorm induced waterlogging associated outage of distribution system with consideration of micro‑topography[J]. Journal of Electric Power Science and Technology,2024,39(4):84-92.

Copy
Related Videos

Share
Article Metrics
  • Abstract:339
  • PDF: 764
  • HTML: 0
  • Cited by: 0
History
  • Online: September 10,2024
Article QR Code