Parameters identification of lithium battery based on forgetting factor recursive least square algorithm with improved initial value
CSTR:
Author:
Affiliation:

(1.School of College of Electrical & Information Engineering., Changsha University of Science & Technology, Changsha 410114, China;2.Disaster Prevention and Reduction Center, State Grid Hunan Electric Power Co., Ltd.,Changsha 410007, China)

Clc Number:

TM911

  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • | | | |
  • Comments
    Abstract:

    Accurate estimation of the state of charge (SOC) of lithium-ion batteries relies on precise model parameters. When using the forgetting factor recursive least square (FFRLS) algorithm for parameter identification of the equivalent circuit model of lithium-ion batteries, improper selection of initial iterative values can lead to low identification accuracy and slow convergence speed. To address this issue, circuit analysis is combined with the FFRLS algorithm, and then an improved initial value-FFRLS (IIV-FFRLS) algorithm is proposed. Firstly, offline identification is performed to obtain the equivalent circuit model parameters corresponding to various SOC points, which are then fitted using a polynomial function. Secondly, the initial SOC is obtained using the initial open circuit voltage (OCV) and the OCV-SOC curve, which is then substituted into the parameter fitting function to obtain the initial parameters. Finally, these initial parameters are used in the recursive formula to obtain the initial iterative values for the IIV-FFRLS algorithm. Parameter identification is performed for four operating conditions of lithium-ion batteries, and the results show that compared with traditional methods, the IIV-FFRLS algorithm reduces the average relative error by more than 58% and the convergence time by more than 23%. The IIV-FFRLS algorithm exhibits higher identification accuracy and faster convergence speed.

    Reference
    [1] 吴皓文,王军,龚迎莉,等.储能技术发展现状及应用前景分析[J].电力学报,2021,36(5):434-443. WU Haowen,WANG Jun,GONG Yingli,et al.Development status and application prospect analysis of energy storage technology[J].Journal of Electric Power,2021,36(5):434-443.
    [2] 禹海峰,黄婧杰,蒋诗谣,等.计及储能使用年寿命的风电场整体性储能配置[J].电力科学与技术学报,2022,37(4):152-160. YU Haifeng,HUANG Jingjie,JIANG Shiyao,et al.The overall energy storage configuration of wind farms considering the service life of electric energy storage[J].Journal of Electric Power Science and Technology,2022,37(4):152-160.
    [3] RAGAB A,HAMIDA M A,MESBAHI T.Parameter identification and state-of-charge estimation for lithium-polymer battery cells using enhanced sunflower optimization algorithm[J].International Journal of Hydrogen Energy,2020,45(15):8833-8842.
    [4] 孔顺飞,胡志坚,谢仕炜,等.考虑分布式储能与电动汽车充电网络的配电网多目标规划[J].电力科学与技术学报,2021,36(1):106-116. KONG Shunfei,HU Zhijian,XIE Shiwei,et al.Multi-objective planning of distribution network considering distributed energy storage and electric vehicle charging network[J].Journal of Electric Power Science and Technology,2021,36(1):106-116.
    [5] 王涛,钟浩,李世春,等.基于主从博弈的多微电网储能容量优化配置[J].智慧电力,2023,51(1):9-15+68. WANG Tao,ZHONG Hao,LI Shichun,et al.Optimal allocation of energy storage capacity in multi-microgrid based on master-slave game[J].Smart Power,2023,51(1):9-15+68.
    [6] 薄利明,郑惠萍,张世锋,等.锂电池健康状态均衡技术综述[J].电测与仪表,2023,60(4):11-18. BO Liming,ZHENG Huiping,ZHANG Shifeng,et al.Review on health state equalization technology for lithium batteries[J].Electrical Measurement & Instrumentation,2023,60(4): 11-18.
    [7] 李建林,方知进,李雅欣,等.用于应急的移动储能系统集群协同控制综述[J].电力建设,2022,43(3): 75-82. LI Jianlin,FANG Zhijin,LI Yaxin,et al. Overview of cluster cooperative control of mobile energy storage system for emergency response[J]. Electric Power Construction,2022,43(3): 75-82.
    [8] SUN Q,Lü H,WANG S,et al.Optimized state of charge estimation of lithium-ion battery in SMES/Battery hybrid energy storage system for electric vehicles[J].IEEE Transactions on Applied Superconductivity,2021,31(8):1-6.
    [9] 黄鹏超,鄂加强.基于双自适应卡尔曼滤波的锂电池状态估算[J].储能科学与技术,2022,11(2):660-666. HUANG Pengchao,E Jiaqiang.State estimation of lithium-ion battery based on dual adaptive Kalman filter[J].Energy Storage Science and Technology,2022,11(2):660-666.
    [10] 武龙星,庞辉,晋佳敏,等.基于电化学模型的锂离子电池荷电状态估计方法综述[J].电工技术学报,2022,37(7):1703-1725. WU Longxing,PANG Hui,JIN Jiamin,et al.A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J].Transactions of China Electrotechnical Society,2022,37(7):1703-1725.
    [11] 吴小慧,张兴敢.锂电池二阶RC等效电路模型参数辨识[J].南京大学学报(自然科学),2020,56(5):754-761. WU Xiaohui,ZHANG Xinggan.Parameters identification of second order RC equivalent circuit model for lithium batteries[J].Journal of Nanjing University(Natural Science),2020,56(5):754-761.
    [12] 尚彦赟,宋红为,杨照光,等.基于二阶RC模型的锂电池充放电特性分析[J].高压电器,2023,59(7):87-94. SHANG Yanyun,SONG Hongwei,YANG Zhaoguang,et al.Charge and discharge characteristics analysis of lithium battery based on second-order RC model[J]. High Voltage Apparatus,2023,59(7):87-94.
    [13] 皮钒,王耀南,孟步敏.基于扩展PSO和离散PI观测器的电池SoC估计[J].电子测量与仪器学报,2016,30(1):11-19. PI Fan,WANG Yaonan,MENG Bumin.SoC estimation of battery based on extended PSO and discrete PI observer[J].Journal of Electronic Measurement and Instrumentation,2016,30(1):11-19.
    [14] PIZARRO-CARMONA V,CASTANO-SOLíS S,CORTéS-CARMONA M,et al.GA-based approach to optimize an equivalent electric circuit model of a Li-ion battery-pack[J].Expert Systems with Applications,2021,172:114647.
    [15] 张金龙,魏艳君,李向丽,等.基于模型参数在线辨识的蓄电池SOC估算[J].电工技术学报,2014,29(S1):23-28. ZHANG Jinglong,WEI Yanjun,LI Xiangli,et al.Battery SOC estimation based on online parameter identification[J].Transactions of China Electrotechnical Society,2014,29(S1):23-28.
    [16] 贾海峰,李聪.动力锂电池SOC估计仿真研究[J].计算机仿真,2021,38(5):55-59+228. JIA Haifeng,LI Cong.Simulation study on dynamic lithium battery SOC estimation[J].Computer Simulation,2021,38(5):55-59+228.
    [17] 邓子豪,夏向阳,张嘉诚.磷酸铁锂电池优化多因子状态在线评估方法[J].电网与清洁能源,2022,38(3):90-96. DENG Zihao,XIA Xiangyang,ZHANG Jiacheng.An optimized multi-factor online assessment method of SOH for LiFePO4 batteries[J].Power System and Clean Energy,2022,38(3):90-96.
    [18] 刘鹏,李云伍,梁新成.基于遗忘递推最小二乘与自适应无迹卡尔曼滤波的锂电池SOC估计[J].汽车技术,2022(2):21-27. LIU Peng,LI Yunwu,LIANG Xincheng.Estimation of lithium battery SOC based on FFRLS and AUKF[J].Automobile Technology,2022(2):21-27.
    [19] 刘雨洋,王顺利,谢滟馨,等.基于在线参数辨识和改进2RC-PNGV模型的锂离子电池建模与SOC估算研究[J].储能科学与技术,2021,10(6):2312-2317. LIU Yuyang,WANG Shunli,XIE Yanxin,et al.Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model[J].Energy Storage Science and Technology,2021,10(6):2312-2317.
    [20] 寇发荣,王甜甜,王思俊,等.基于ABC-RFEKF算法的锂电池SOC估计[J].电力系统保护与控制,2022,50(4):163-171. KOU Farong,WANG Tiantian,WANG Sijun.Lithium battery SOC estimation based on an ABC-RFEKF algorithm[J].Power System Protection and Control,2022,50(4):163-171.
    [21] 卫志农,原康康,成乐祥,等.基于多新息最小二乘算法的锂电池参数辨识[J].电力系统自动化,2019,43(15):139-145. WEI Zhinong,YUAN Kangkang,CHENG Lexiang,et al.Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J].Automation of Electric Power Systems,2019,43(15):139-145.
    Related
    Cited by
Get Citation

王 文,史华泽,岳雨霏,黎隆基,吴传平,童宇轩.基于改进初值带遗忘因子的递推最小二乘法的锂电池参数辨识[J].电力科学与技术学报英文版,2024,39(4):178-186. WANG Wen, SHI Huaze, YUE Yufei, LI Longji, WU Chuanping, TONG Yuxuan. Parameters identification of lithium battery based on forgetting factor recursive least square algorithm with improved initial value[J]. Journal of Electric Power Science and Technology,2024,39(4):178-186.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Online: September 10,2024
Article QR Code