Potential distribution law of dry‑type air‑core smoothing reactor winding under high‑order harmonics
Author:
Affiliation:

(1.Electric Power Science Research Institute, State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750011, China; 2. Ultra High Voltage Company, State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750011, China; 3. School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Clc Number:

TM47

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • | | | |
  • Comments
    Abstract:

    Under the action of high-order harmonics, the potential distribution of the multi-layer parallel winding of the dry-type air-core smoothing reactor will form abnormal distortion, resulting in local field strength concentration and accelerated electrical aging, which will affect the service life of the reactor. To solve this problem, firstly, based on Fourier analysis, the high-order harmonic characteristics of a smoothing reactor under operating conditions are obtained. Then, the physical model of the reactor with the line turn as the basic unit is established, and the potential distribution law of the dry-type air-core smoothing reactor winding under high-order harmonics and direct current (DC) superposition is studied by the finite element analysis method of field-circuit coupling. The results show that compared with the DC case, the loading of high-order harmonics will make the electric field distribution of the reactor winding uneven, and the field strength of the strongest point in the overall electric field of the reactor increases by 15%. Under the influence of high-order harmonics, the inter-turn field strength difference between the upper and lower ends of the single-layer winding of the reactor increases, and the inter-layer field strength of the windings on both sides of the encapsulation increases. The maximum electric field of the outermost winding is about 20% higher than that of the innermost winding. As a result, the outermost encapsulation of the dry-type air-core smoothing reactor is the most prone to electrical aging.

    Reference
    [1] 汪先进,周凯,赵世林,等.不同材料对变电站内三相空心电抗器磁场干扰的屏蔽效果研究[J].电力科学与技术学报,2021,36(4):150-156. WANG Xianjin,ZHOU Kai,ZHAO Shilin,et al.Research for magnetic shielding effect of 3-phase air core reactor in substation by using different materials[J].Journal of Electric Power Science and Technology,2021,36(4):150-156.
    [2] 张学友,董翔宇,葛健,等.基于模拟退火算法的特高压直流VDCOL控制环节优化方法[J].电力科学与技术学报,2024,39(4):53-60. ZHANG Xueyou,DONG Xiangyu,GE Jian,et al.Optimization for VDCOL of high-voltage DC transmission system based on simulated annealing algorithm[J].Journal of Electric Power Science and Technology,2024,39(4):53-60.
    [3] 廉玉欣,杨世彦,杨威.基于非常规平衡电抗器的直流侧谐波抑制方法[J].电工技术学报,2021,36(18):3957-3968. LIAN Yuxin,YANG Shiyan,YANG Wei.The harmonic reduction method at DC link based on unconventional interphase reactor[J].Transactions of China Electrotechnical Society,2021,36(18):3957-3968.
    [4] 李星汉,李永建,张长庚,等.考虑谐波损耗特性的干式平波电抗器热效应模拟与验证[J].高压电器,2021,57(9):58-65. LI Xinghan,LI Yongjian,ZHANG Changgeng,et al.Simulation and verification on thermal effects of dry-type smoothing reactor considering harmonics loss characteristics[J].High Voltage Apparatus,2021,57(9):58-65.
    [5] 毛颖科,张天枫,朱正一,等.±500 kV直流换流阀用饱和电抗器温度场与电场仿真研究[J].高压电器,2024,60(1):128-135. MAO Yingke,ZHANG Tianfeng,ZHU Zhengyi,et al.Simulation study on thermal and electric field of saturable reactor for ± 500 kV converter valve[J].High Voltage Apparatus,2024,60(1):128-135.
    [6] 游帅,陈仁刚,王潇洋.35 kV干式空心电抗器烧毁故障原因分析及保护配置探讨[J].山东电力技术,2022,49(9):55-60. YOU Shuai,CHEN Rengang,WANG Xiaoyang.Burnout fault analysis and discussion on protection configuration for a 35 kV dry-type reactor[J].Shandong Electric Power,2022,49(9):55-60.
    [7] 孟文杰,张荣秋,蔡婧,等.浅谈一起750 kV单相并联电抗器局放超标分析[J].变压器,2022,59(1):73-75+21. MENG Wenjie,ZHANG Rongqiu,CAI Jing,et al.Analysis of a partial discharge exceeding standard of a 750 kV single-phase shunt reactor[J].Transformer,2022,59(1):73-75+21.
    [8] 王南,李东,周志强,等.一起500 kV高压电抗器内部过热故障案例分析[J].变压器,2022,59(2):72-75. WANG Nan,LI Dong,ZHOU Zhiqiang,et al.Case analysis of a 500 kV HV reactor internal overheating fault[J].Transformer,2022,59(2):72-75.
    [9] 陈政,周鹏杰,周盛玮,等.特高压换流站交流滤波器电抗器故障分析及预防措施[J].江西电力,2024,48(3):40-43. CHEN Zheng,ZHOU Pengjie,ZHOU Shengwei,et al.Fault analysis and preventive measures of AC filter reactor in UHV converter station[J].Jiangxi Electric Power,2024,48(3):40-43.
    [10] 董建新,舒乃秋,闫强强,等.干式空心并联电抗器过热性故障温度场耦合计算与分析[J].武汉大学学报(工学版),2018,51(5):437-442. DONG Jianxin,SHU Naiqiu,YAN Qiangqiang,et al.Coupling calculation and analysis of temperature field of dry-type air-core shunt reactor during overheat fault[J].Engineering Journal of Wuhan University,2018,51(5):437-442.
    [11] 周光远,曹继丰,蓝磊,等.±800 kV干式平波电抗器周围电场三维仿真[J].武汉大学学报(工学版),2014,47(6):833-837. ZHOU Guangyuan,CAO Jifeng,LAN Lei,et al.Three-dimensional simulation of electric field around ±800 kV dry-type smoothing reactor[J].Engineering Journal of Wuhan University,2014,47(6):833-837.
    [12] 丁玉剑,张月华,周松松,等.±1 100 kV干式平波电抗器电场分布和操作冲击放电特性[J].电网技术,2017,41(11):3414-3419. DING Yujian,ZHANG Yuehua,ZHOU Songsong,et al.Study on electric field distribution and switching impulse discharge characteristics of ±1 100 kV dry-type smoothing reactor[J].Power System Technology,2017,41(11):3414-3419.
    [13] 杨国华,王文豪,陈蕾,等.平波电抗器绝缘校核仿真的高效降阶算法研究[J].高压电器,2023,59(5):68-74+83. YANG Guohua,WANG Wenhao,CHEN Lei,et al.Efficient algorithm study of reduced order modeling for smoothing reactor insulation verification[J].High Voltage Apparatus,2023,59(5):68-74+83.
    [14] 彭庆军,姜雄伟,马仪,等.基于有限元方法的35 kV干式空心并联电抗器匝间电场分布研究[J].高压电器,2018,54(2):147-152. PENG Qingjun,JIANG Xiongwei,MA Yi,et al.Analysis of 35 kV dry-type air-core reactors turn-to-turn field distribution based on the finite element method[J].High Voltage Apparatus,2018,54(2):147-152.
    [15] 奚晶亮,刘成柱,王国金,等.±1 100 kV户内平波电抗器均压装置表面电场分析与验证[J].电力勘测设计,2018(3):43-47+63. XI Jingliang,LIU Chengzhu,WANG Guojin,et al.Surface electric field analysis and test verification of shielding fittings of ±1 100 kV smoothing reactors for indoor[J].Electric Power Survey & Design,2018(3):43-47+63.
    [16] 毛艳,丁玉剑,郭贤珊,等.±1 100 kV PLC电抗器均压屏蔽装置的结构优化[J].高电压技术,2021,47(4):1436-1442. MAO Yan,DING Yujian,GUO Xianshan,et al.Structure optimization of grading and shielding devices for ±1 100 kV PLC reactor[J].High Voltage Engineering,2021,47(4):1436-1442.
    [17] 吴彦霖,谭向宇,马仪,等.电场分布以及匝数偏差暂态电动力对干式空心并联电抗器影响的研究[J].高压电器,2016,52(10):99-107. WU Yanlin,TAN Xiangyu,MA Yi,et al.Study of the influence of electric field distribution and turns deviation transient electrodynamic force on dry-type air-core shunt reactor[J].High Voltage Apparatus,2016,52(10):99-107.
    [18] 敖明.户外干式空芯电抗器绝缘结构电场数值计算与分析[J].中国电力,1998,31(7):45-47. AO Ming.Test of tree discharge on surface of dry-type air-core reactors[J].Electric Power,1998,31(7):45-47.
    [19] 汪洋.空心电抗器的电场分布与绝缘性能研究[D].昆明:昆明理工大学,2018. WANG Yang.Study on electric field distribution and insulation performance of air-core reactor[D].Kunming:Kunming University of Science and Technology,2018.
    [20] 陈莉娟.空心电抗器波过程计算及结果分析[D].哈尔滨:哈尔滨理工大学,2020. CHEN Lijuan.Wave process calculation and result analysis of air-core reactor[D].Harbin:Harbin University of Science and Technology,2020.
    [21] 刘虹.干式空心并联电抗器电压及电场分布特性研究[D].哈尔滨:哈尔滨理工大学,2017. LIU Hong.Study on voltage and electric field distribution characteristics of dry-type air-core shunt reactor[D].Harbin:Harbin University of Science and Technology,2017.
    [22] 汤浩,贾鹏飞,李金忠,等.特高压直流干式平波电抗器多谐波特征参量测试技术及应用[J].高电压技术,2017,43(3):859-865. TANG Hao,JIA Pengfei,LI Jinzhong,et al.Testing technology of multi-harmonic characteristic parameters and its application for UHVDC dry-type smoothing reactors[J].High Voltage Engineering,2017,43(3):859-865.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

周 秀,白 金,李 宁,田 天,陈 磊,雷佳成,杨 泰,杨 鑫.高次谐波下干式空心平波电抗器绕组的电位分布规律研究[J].电力科学与技术学报英文版,2024,39(6):269-276. ZHOU Xiu, BAI Jin, LI Ning, TIAN Tian, CHEN Lei, LEI Jiacheng, YANG Tai, YANG Xin. Potential distribution law of dry‑type air‑core smoothing reactor winding under high‑order harmonics[J]. Journal of Electric Power Science and Technology,2024,39(6):269-276.

Copy
Share
Article Metrics
  • Abstract:100
  • PDF: 119
  • HTML: 0
  • Cited by: 0
History
  • Online: February 14,2025
Article QR Code