Distributed state estimation of new power system based on edge computing
Author:
Affiliation:

(1.Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Guangzhou 510000, China;2.Dongfang Electronics Co., Ltd., Yantai 264000, China)

Clc Number:

TM76

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • | | | |
  • Comments
    Abstract:

    The large-scale integration of renewable energy generation into new power systems has led to an exponential increase in operational data. Due to the severe temporal fluctuations and large disturbances of renewable energy, a large amount of bad and malicious data can emerge in the new power system. In addition, these operational data are managed in a distributed manner, leading to the poor performance of traditional centralized state estimation methods in calculation accuracy, speed, and other aspects. To solve this problem, distributed state estimation of new power systems based on edge computing is proposed. Firstly, the shortcomings of traditional centralized state estimation methods are pointed out, and a calculation approach for privacy in distributed state estimation is designed, with coordinated variables as the core. Secondly, based on traditional nonlinear state estimation models, an improved linear state estimation method is proposed to improve computational speed. Next, a multi-objective ant colony distributed algorithm based on edge computing is proposed to realize distributed state estimation. Finally, by taking the IEEE57 system integrated into a real-life new power system as an example, the proposed state estimation algorithm is simulated and verified, and the results confirm its accuracy and high computational speed.

    Reference
    [1] 沙伟燕,胡伟,何宁辉,等.大规模虚拟储能平抑新能源功率预测误差优化调度方法[J].电力科学与技术学报,2023,38(6):167-174. SHA Weiyan,HU Wei,HE Ninghui,et al.Optimal scheduling method for stabilizing power prediction error of new energy by large-scale virtual energy storage[J].Journal of Electric Power Science and Technology,2023,38(6):167-174.
    [2] 周鑫,程松,任景,等.含储热型热电联产机组的电力系统源荷联合优化调峰方法[J].电力科学与技术学报,2023,38(5):12-21. ZHOU Xin,CHENG Song,REN Jing,et al.A source-load joint optimization peak regulation method of power system with heat storage combined heat and power units[J].Journal of Electric Power Science and Technology,2023,38(5):12-21.
    [3] 杨家俊,邓星,朱克东,等.基于异构图学习的新能源出力预测模型推理方法[J].电力建设,2023,44(8):41-51.YANG Jiajun,DENG Xing,ZHU Kedong,et al.Inference method for new energy power prediction models based on heterogeneous graph learning[J].Electric Power Construction,2023,44(8):41-51.
    [4] 潘旭,王会超,王建中,等.基于优先消纳新能源的电网调峰难度分析指标体系研究[J].供用电,2023,40(2):78-84.PAN Xu,WANG Huichao,WANG Jianzhong,et al.Index system research on difficulty analysis of power grid peak shaving with priority consumption of new energy[J].Distribution & Utilization,2023,40(2):78-84.
    [5] 夏世威,张茜,余璟,等.基于一致性理论的多区域电力系统分布式状态估计[J].电力自动化设备,2019,39(12):140-147. XIA Shiwei,ZHANG Qian,YU Jing,et al.Distributed state estimation of multi-area power systems based on consensus algorithm[J].Electric Power Automation Equipment,2019,39(12):140-147.
    [6] 方陈,姚维强,魏新迟,等.考虑节点时空相关性的有限配电网PMU装置优化部署[J].电网与清洁能源,2023,39(8):105-115.FANG Chen,YAO Weiqiang,WEI Xinchi,et al.Optimal placement of limited distribution PMU considering spatiotemporal correlation of nodes[J].Power System and Clean Energy,2023,39(8):105-115.
    [7] 江楠,董熙,高原,等.基于暂态录波与多元状态估计的阀冷系统故障预警及识别[J].电气技术,2024,25(2):45-61. JIANG Nan,DONG Xi,GAO Yuan,et al.Fault warning and identification of valve cooling system based on transient recording and multivariate state estimation[J].Electrical Engineering,2024,25(2):45-61.
    [8] 李媛.基于智能电能表数据的配电网状态估计[J].电测与仪表,2023,60(4):182-185.LI Yuan.Distribution network state estimation based on smart meter data[J].Electrical Measurement & Instrumentation,2023,60(4):182-185.
    [9] 夏添梁,张玉敏,杨明,等.联合长短期记忆神经网络和粒子滤波的配电网预测辅助鲁棒状态估计方法[J].高电压技术,2022,48(4):1343-1355. XIA Tianliang,ZHANG Yumin,YANG Ming,et al.Robust forecasting-aided state estimation method of distribution network based on long-short term memory neural network and particle filter[J].High Voltage Engineering,2022,48(4):1343-1355.
    [10] 方春华,陶玉宁,吴田,等.基于HHT的绝缘子泄漏电流分析及放电状态分类识别[J].高压电器,2024,60(1):25-32.FANG Chunhua,TAO Yuning,WU Tian,et al.Leakage current analysis and classification of discharge state identification of insulator based on HHT[J].High Voltage Apparatus,2024,60(1):25-32.
    [11] 周文斌,靳阳,刘士峰,等.基于两阶段状态估计的配电智能计量系统设计[J].电子器件,2022,45(6):1418-1423. ZHOU Wenbin,JIN Yang,LIU Shifeng,et al.Design of distribution intelligent system based on two-stage state estimation[J].Chinese Journal of Electron Devices,2022,45(6):1418-1423.
    [12] 刘科研,盛万兴,何开元,等.基于拉格朗日松弛技术的复杂有源配电网分布式状态估计[J].电力系统保护与控制,2017,45(15):125-132. LIU Keyan,SHENG Wanxing,HE Kaiyuan,et al.Distributed state estimation of complex active distribution network based on Lagrange relaxation technique[J].Power System Protection and Control,2017,45(15):125-132.
    [13] 乐健,李星锐,周谦,等.电力系统多区域分布式状态估计方法[J].电力自动化设备,2020,40(5):165-172. LE Jian,LI Xingrui,ZHOU Qian,et al.Multi-area distributed state estimation method for power system[J].Electric Power Automation Equipment,2020,40(5):165-172.
    [14] 张铄,吴丽珍.计及坏数据辨识与修正的配电网状态估计[J].电气技术,2022,23(11):1-12. ZHANG Shuo,WU Lizhen.Distribution network state estimation considering bad data identification and correction[J].Electrical Engineering,2022,23(11):1-12.
    [15] 郭梦芳,杜翔,王飞.考虑边界等式约束的电?气?热综合能源系统鲁棒状态估计方法[J].中国电力,2023,56(6):101-106.GUO Mengfang,DU Xiang,WANG Fei.Robust state estimation method for electric-gas-heat integrated energy system considering boundary equation constraints[J].Electric Power,2023,56(6):101-106.
    [16] 翟苏巍,李文云,周成,等.基于改进概率神经网络的储能电池荷电状态估计[J].智慧电力,2024,52(2):94-100.ZHAI Suwei,LI Wenyun,ZHOU Cheng,et al.State-of-charge estimation of energy storage batteries based on modified probabilistic neural networks[J].Smart Power,2024,52(2):94-100.
    [17] 黄哲洙,金鹏,王洋,等.含光伏发电的配电网分布式状态估计方法[J].太阳能学报,2021,42(7):167-174. HUANG Zhezhu,JIN Peng,WANG Yang,et al.A distributed state estimation method for distribution networks containing photovoltaic power generation[J].Acta Energiae Solaris Sinica,2021,42(7):167-174.
    [18] 徐俊俊,吴在军,胡秦然,等.考虑多类型分布式电源和负荷不确定性的主动配电网区间状态估计[J].中国电机工程学报,2018,389(11):3255-3266. XU Junjun,WU Zaijun,HU Qinran,et al.Interval state estimation for active distribution networks considering uncertainties of multiple types of DGs and loads[J].Proceedings of the CSEE,2018,389(11):3255-3266.
    [19] ISSICABA D,COSTA A S,COLOMBO J L.Real- time monitoring of points of common coupling in distribution systems through state estimation and geometric tests[J].IEEE Transactions on Smart Grid,2016,7(1):9-18.
    [20] 尹冠雄,陈彬彬,孙宏斌,等.综合能源系统分析的统一能路理论(四):天然气网动态状态估计[J].中国电机工程学报,2020,40(18):5827-5837. YIN Guanxiong,CHEN Binbin,SUN Hongbin,et al.Energy circuit theory of integrated energy system analysis (IV):dynamic state estimation of the natural gas network[J].Proceedings of the CSEE,2020,40(18):5827-5837.
    [21] 龙文,黄涛,朱燕,等.基于状态估计的配电网多源信息数据辨识[J].电子器件,2022,45(6):1408-1412. LONG Wen,HUANG Tao,ZHU Yan,et al.Multi-source information data identification in distribution network based on state estimation[J].Chinese Journal of Electron Devices,2022,45(6):1408-1412.
    [22] ZANG H X,GENG M H,HUANG M Y,et al.Asynchronous and adaptive state estimation of integrated electricity-gas energy systems[J].IEEE Internet of Things Journal,2023,10(9):7636-7644.
    [23] CHEN L,LI Y,HUANG M Y,et al.Robust dynamic state estimator of integrated energy systems based on natural gas partial differential equations[J].IEEE Transactions on Industry Applications,2022,58(13):3303-3312.
    [24] 陈远东,孟辉,包森布尔,等.基于边缘计算的新能源电网云?边协同优化调度模型研究[J].可再生能源,2023,41(3):377-383. CHEN Yuandong,MENG Hui,BAO Fenbuer,et al.Research on cloud-Side collaborative optimal scheduling model of new energy grid based on edge computing[J].Renewable Energy Resources,2023,41(3):377-383.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

黄奕俊,肖 健,彭依明,桂文豪,辛海滨.基于边缘计算的新型电力系统分布式状态估计[J].电力科学与技术学报英文版,2025,40(1):77-84,112. HUANG Yijun, XIAO Jian, PENG Yiming, GUI Wenhao, XIN Haibin. Distributed state estimation of new power system based on edge computing[J]. Journal of Electric Power Science and Technology,2025,40(1):77-84,112.

Copy
Share
Article Metrics
  • Abstract:431
  • PDF: 369
  • HTML: 0
  • Cited by: 0
History
  • Online: March 18,2025
Article QR Code