Meter‑to‑transformer relationship identification based on APLR and ICFSFDP
Author:
Affiliation:

(1.College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 2. Electric Power Research Institute, State Grid Shanghai Municipal Electric Power Company, Shanghai 200437, China)

Clc Number:

TM743

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • | | | |
  • Comments
    Abstract:

    Factors like low troubleshooting efficiency and untimely data updates make meter-to-transformer wiring relationships in low-voltage distribution networks deviate from the actual situation. To address this issue, a meter-to-transformer relationship identification method based on the combination of angle piecewise linear representation (APLR) and improved clustering by fast search find of density peaks (ICFSFDP) is proposed. Initially, inflection points in the voltage curve are extracted by analyzing the angle variations between neighboring segments, and the curve undergoes adaptive dimensionality reduction and reconstruction using APLR. Then, the ICFSFDP method is deployed to cluster the data sets after dimensionality reduction, and the optimal number of clusters is determined by identifying the minimum area enclosed by the fitted function and the coordinate axis within the decision graph. This allows the identification of central clustered and non-clustered consumers. Finally, the dynamic time warping (DTW) distance is utilized to measure the distance similarity between the central clustered and non-clustered consumers, obtaining meter-to-transformer relationships. The application of this method on both simulated and real data has validated its effectiveness. Results from the analytical cases indicate that this approach can analyze sequences with varied time intervals and dimensions without the need for manually setting clustering algorithm parameters, delivering a high accuracy in identifying meter-to-transformer relationships.

    Reference
    [1] 马尚,卫志农,黄蔓云,等.基于智能电表数据的低压配电网拓扑与线路参数联合辨识[J].电力系统自动化,2024,48(2): 60-70. MA Shang,WEI Zhinong,HUANG Manyun,et al. Joint identification of topology and line parameters for low-voltage distribution network based on smart meter data[J].Automation of Electric Power Systems,2024,48 (2): 60-70.
    [2] 俞林刚,李铭,伍栋文,等.配电网拓扑参数未知场景下中压用户窃电检测方法[J].电网与清洁能源,2023,39(9):91-100.YU Lingang,LI Ming,WU Dongwen,et al. An electricity theft detection method of medium voltage users in the case of unknown for distribution network topology parameters[J].Power System and Clean Energy,2023,39(9):91-100.
    [3] 周宁,方治,蔺晨晖,等.基于正则化拉格朗日乘子法的配电网网络拓扑辨识[J].供用电,2024,41(6):12-20.ZHOU Ning,FANG Zhi,LIN Chenhui,et al.Topology identification of distribution network based on regularized Lagrangian multiplier[J].Distribution & Utilization,2024,41(6):12-20.
    [4] 张国驹,裴玮,杨鹏,等.中压配电网柔性互联设备的电路拓扑与控制技术综述[J].电力系统自动化,2023,47 (6): 18-29. ZHANG Guoju,PEI Wei,YANG Peng,et al.Review on circuit topology and control technology of flexible interconnection devices for medium-voltage distribution network[J].Automation of Electric Power Systems,2023,47 (6):18-29.
    [5] 黄代雄,汪志军,袁俑斌,等.考虑多源协同的主动配电网故障恢复策略[J].高压电器,2024,60(2):210-215. HUANG Daixiong,WANG Zhijun,YUAN Yongbin,et al.Fault recovery strategy considering multi-source collaborative active distribution network[J].High Voltage Apparatus,2024,60(2):210-215.
    [6] 张津铭,赵健,唐维溢,等.动态拓扑下基于终端数据挖掘的配电网异常节点检测[J].智慧电力,2024,52(7):1-9.ZHANG Jinming,ZHAO Jian,TANG Weiyi,et al.Abnormal node detection in distribution network based on terminal data mining in dynamic topology[J].Smart Power,2024,52(7):1-9.
    [7] 殷涵,宣羿,黄怡,等. 基于虚拟阻抗的低压配电网拓扑识别方法[J]. 电力系统保护与控制,2024,52 (3): 83-93. YIN Han,XUAN Yi,HUANG Yi,et al. Virtual impedance-based low-voltage distribution network topology identification method[J].Power System Protection and Control,2024,52 (3): 83-93.
    [8] 陈碧云,吕怡博,梁志坚,等.考虑数据失衡的新型配电网两阶段拓扑辨识[J].电力系统保护与控制,2023,51 (21): 57-65. CHEN Biyun,LYU Yibo,LIANG Zhijian,et al. Two-stage topology identification of a new-type distribution network considering data imbalance[J].Power System Protection and Control,2023,51 (21): 57-65.
    [9] 王艳,王阳,赵洪山,等.中压配电网电力线载波通信信道建模[J].电力系统保护与控制,2021,49(8):50-57. WANG Yan,WANG Yang,ZHAO Hongshan,et al. Channel modeling of power line communication in a medium voltage distribution network[J]. Power System Protection and Control,2021,49 (8): 50-57.
    [10] 朱晓荣,司羽. 考虑物理?信息?交通网耦合的配电网多时段动态供电恢复策略[J]. 电工技术学报,2023,38 (12): 3306-3320. ZHU Xiaorong,SI Yu. Multi-period dynamic power supply restoration strategy considering physical-cyber-traffic network coupling[J].Transactions of China Electrotechnical Society,2023,38(12): 3306-3320.
    [11] 邓淑斌,李嵘,梁志飞,等.考虑碳交易和绿证交易的配电网优化运行策略[J].电力建设,2023,44(10):149-156.DENG Shubin,LI Rong,LIANG Zhifei,et al.The optimal operation strategy of distribution network considering carbon trading and green certificate trading mechanisms[J].Electric Power Construction,2023,44(10):149-156.
    [12] XU C,LEI Y,ZOU Y.A method of low voltage topology identification[C]//IEEE Conference on Telecommunications,Optics and Computer Science,Shenyang,China,2020.
    [13] 唐冬来,倪平波,张捷,等.基于离散弗雷歇距离的户变关系识别方法[J].电力系统自动化,2021,45(6):223-230. TANG Donglai,NI Pingbo,ZHANG Jie,et al.Identification method for relationship between household transformers based on discrete frechet distance[J].Automation of Electric Power Systems,2021,45(6):223-230.
    [14] 焦昊,殷岩岩,吴晨,等.基于安全强化学习的主动配电网有功?无功协调优化调度[J].中国电力,2024,57(3):43-50.JIAO Hao,YIN Yanyan,WU Chen,et al.Coordinated optimization of active and reactive power of active distribution network based on safety reinforcement learning[J].Electric Power,2024,57(3):43-50.
    [15] 荆志朋,柴林杰,胡诗尧.基于改进LSTM-VAE的配电网异常负荷检测方法研究[J].电测与仪表,2024,61(9):71-76.JING Zhipeng,CHAI Linjie,HU Shiyao.Research on abnormal load detection method for distribution network based on improved LSTM-VAE[J].Electrical Measurement & Instrumentation,2024,61(9):71-76.
    [16] 吴龙腾,徐春华,邱泽坚,等. 考虑双侧量测误差的配电网拓扑识别及参数联合估计方法[J]. 电力系统保护与控制,2023,51 (16): 149-157. WU Longteng,XU Chunhua,QIU Zejian,et al. Topology identification and joint parameter estimation of a distribution network considering bilateral measurement errors[J].Power System Protection and Control,2023,51 (16): 149-157.
    [17] 陈沛东,曹华珍,何璇,等.中压配电网近邻交互式分布式拓扑辨识算法[J].电力工程技术,2023,42(2):139-146. CHEN Peidong,CAO Huazhen,HE Xuan,et al.Distributed topology identification algorithm of medium-voltage distribution network based on neighboring interaction[J].Electric Power Engineering Technology,2023,42(2):139-146.
    [18] LUAN W,PENG J,MARAS M,et al.Smart meter data analytics for distribution network connectivity verification[J].IEEE Transactions on Smart Grid,2015,6(4):1964-1971.
    [19] 戴雪婷,李辉,何柏娜,等. 配电网拓扑分析与线路参数辨识研究[J].电力科学与技术学报,2023,38(4): 46-56. DAI Xueting,LI Hui,HE Bona,et al.Research on topology analysis and line parameter identification of distribution network[J].Journal of Electric Power Science and Technology,2023,38(4): 46-56.
    [20] 郭上华,王钢.基于多粒度聚类和多元特征统计的低压配电网拓扑识别与监测[J].电力自动化设备,2023,43(6):86-93. GUO Shanghua,WANG Gang. Research on topology analysis and line parameter identification of distribution network[J].Electric Power Automation Equipment,2023,43(6):86-93.
    [21] 宋玮琼,郭帅.基于电压时序数据的配电台区户变关系智能识别[J].电力系统及其自动化学报,2022,34(1):48-55. SONG Weiqiong,GUO Shuai.Intelligent recognition of user-transformer relationship in distribution station area based on time series voltage data[J].Proceedings of the CSU-EPSA,2022,34(1):48-55.
    [22] 崔雪原,刘晟源.基于APAA和改进DBSCAN算法的户变关系及相位识别方法[J].电网技术,2021,45(8):3034-3043. CUI Xueyuan,LIU Shengyuan. Consumer-transformer relationship and phase identification based on APAA and improved DBSCAN algorithm[J].Power System Technology,2021,45(8):3034-3043.
    [23] 连子宽,姚力.基于t-SNE 降维和BIRCH聚类的单相用户相位及表箱辨识[J].电力系统自动化,2020,44(8):176-184. LIAN Zikuan,YAO Li.Phase and meter box identification for single-phase users based on t-SNE dimension reduction and BIRCH clustering[J].Automation of Electric Power Systems,2020,44(8):176-184.
    [24] 杜婉琳,王玲,罗威,等.基于深度强化学习的有源配电网电压分层控制策略[J].发电技术,2024,45(4):734-743.DU Wanlin,WANG Ling,LUO Wei,et al.Voltage hierarchical control strategy of active distribution network based on deep reinforcement learning[J].Power Generation Technology,2024,45(4):734-743.
    [25] 刘洋,许立雄,王剑.计及数据类别不平衡的海量用户负荷典型特征高性能提取方法[J].中国电机工程学报,2019,39(14):4093-4104. LIU Yang,XU Lixiong,WANG Jian.A high performance extraction method for massive user load typical characteristics considering data class imbalance[J].Proceedings of the CSEE,2019,39(14):4093-4104.
    [26] 宋军英,崔益伟,李欣然,等. 改进分段线性表示与动态时间弯曲相结合的负荷曲线聚类方法[J]. 电力系统自动化,2021,45(2): 89-96. SONG Junying,CUI Yiwei,LI Xinran,et al.Load curve clustering method combining improved piecewise linear representation and dynamic time warping[J].Automation of Electric Power Systems,2021,45(2): 89-96.
    [27] 詹艳艳,徐荣聪,陈晓云,等.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,25(11):139-142. ZHAN Yanyan,XU Rongcong,CHEN Xiaoyun,et al. Time series piecewise linear representation based on slope extract edge point[J].Computer Science,2006,25(11):139-142.
    [28] PRAT K B,FINK E.Search for patterns in compressed time series[J].International Journal of Image and Graphics,2002,2(1):89-106.
    [29] 付皖皖.论文附录[EB/OL]. https://pan.baidu.com/s/1wNMimra8NsSgCRdgV_PXCg?pwd=lg2s (提取码:lg2s),2025-01-18. FU Wanwan.Appendix to the paper[EB/OL].https://pan.baidu.com/s/1wNMimra8NsSgCRdgV_PXCg?pwd=lg2s(extraction code:lg2s),2025-01-18.
    [30] 杨震,王红军,周宇.一种截断距离和聚类中心自适应的聚类算法[J].数据分析与知识发现,2018,2(3):39-48. YANG Zhen,WANG Hongjun,ZHOU Yu.A clustering algorithm with adaptive cut-off distance and cluster centers[J].Data Analysis and Knowledge Discovery,2018,2(3):39-48.
    [31] 陈俊艺,丁坚勇,田世明,等.基于改进快速密度峰值算法的电力负荷曲线聚类分析[J].电力系统保护与控制,2018,46(20):85-93. CHEN Junyi,DING Jianyong,TIAN Shiming,et al.An improved density peaks clustering algorithm for power load profiles clustering analysis[J].Power System Protection and Control,2018,46(20):85-93.
    [32] 王俊,肖辉,王家奇,等.基于SNN-密度峰值聚类算法的商业用户典型负荷模式提取[J].电力学报,2023,38(1):64-72. WANG Jun,XIAO Hui,WANG Jiaqi,et al. Extracting Typical load patterns of commercial users based on SNN-density peak clustering algorithm[J]. Journal of Electric Power,2023,38 (1):64-72.
    Related
    Cited by
Get Citation

赵 耀,付皖皖,陈 冉,张 涛.基于角度分段线性近似和改进密度峰值聚类的户变关系识别[J].电力科学与技术学报英文版,2025,40(1):113-125. ZHAO Yao, FU Wanwan, CHEN Ran, ZHANG Tao. Meter‑to‑transformer relationship identification based on APLR and ICFSFDP[J]. Journal of Electric Power Science and Technology,2025,40(1):113-125.

Copy
Related Videos

Share
Article Metrics
  • Abstract:401
  • PDF: 382
  • HTML: 0
  • Cited by: 0
History
  • Online: March 18,2025
Article QR Code