Transient voltage instability identification based on Koopman operator in power grid with a high proportion of renewables
Author:
Affiliation:

(1. Inner Mongolia Power Research Institute Branch, Inner Mongolia Power (Group) Co., Ltd., Hohhot 010020, China;2. School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

Clc Number:

TM712

  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • | | | |
  • Comments
    Abstract:

    Transient voltage instability is one of the important factors that threaten the stability of power system. The dynamic reactive power reserve and supporting capacity of the power grid with a high proportion of renewables decrease sharply, and the control models and operation characteristics of grid-connected renewables are diverse. Thus, the reactive power voltage of the system often fluctuates rapidly after a fault occurs, which leads to a more prominent voltage stability problem. In response, a transient voltage instability identification method based on the Koopman operator is proposed in this paper to avoid power system outage accidents caused by voltage instability in time. Firstly, the Koopman operator extraction method of Hankel matrix enhanced dynamic mode decomposition (HeDMD) is proposed with short-time wide-area measurement data after fault. Secondly, the amplitude of the Koopman operator is defined, and the dominant Koopman mode is obtained in descending order. Then, based on the time domain prediction signal of the dominant Koopman mode, the maximum Lyapunov exponent (MLE) is calculated to identify transient voltage instability. Finally, the effectiveness of the proposed method is verified using the Nordic32 test system and the standard system of China Electric Power Research Institute. Compared with the traditional method, the proposed method has more advantages in accuracy and rapidity of transient voltage instability identification. The simulation experiments prove its applicability in power grid with a high proportion of renewables.

    Reference
    [1] Kundur P,Paserba J,Ajjarapu V,et al.Definition and Classification of Power System Stability[J].IEEE Transactions on Power Systems:A Publication of the Power Engineering Society,2004(3):19.
    [2] 林顺富,李寅,戴烨敏,等.考虑谐波耦合的多变流器并网系统建模及交直流谐波交互特性分析[J].电力系统保护与控制,2023,51(10):65-77. LIN Shunfu,LI Yin,DAI Yemin,et al.Modeling of a multiple grid-connected-converter system considering harmonic coupling and analysis of AC/DC harmonic interaction characteristics[J].Power System Protection and Control,2023,51(10):65-77.
    [3] 胡同宇,杨德健,钱敏慧,等.基于惯量同步的构网型永磁直驱风电机组频率支撑及转速恢复策略[J].智慧电力,2024,52(7):72-79. HUTONG Yu,YANG Dejian,QIAN Minhui,et al.Frequency support and speed recovery strategy of grid-forming PMSGs based on inertia synchronization[J].Smart Power,2024,52(7):72-79.
    [4] 鞠平,张建勇.电力系统建模基本理论研究综述[J].电力科学与技术学报,2011,26(1):4-12. JU Ping,ZHANG Jianyong.Basic theory reviews of power system modeling[J].Journal of Electric Power Science and Technology,2011,26(1):4-12.
    [5] 蒋小亮,李元臣,郝元钊,等.计及新能源虚拟惯量的电力系统等效惯量评估[J].电力科学与技术学报,2023,38(4):169-176. JIANG Xiaoliang,LI Yuanchen,HAO Yuanzhao,et al.Evaluation of power system equivalent inertia considering new energy virtual inertia[J].Journal of Electric Power Science and Technology,2023,38(4):169-176.
    [6] GLAVIC M,VAN CUTSEM T.Wide-area detection of voltage instability from synchronized phasor measurements.part I:principle[J].IEEE Transactions on Power Systems,2009,24(3):1408-1416.
    [7] LIU C W,THORP J S,LU J,et al.Detection of transiently chaotic swings in power systems using real-time phasor measurements[J].IEEE Transactions on Power Systems,1994,9(3):1285-1292.
    [8] 张宁宇,赵欣,周前,等.适用于交直流混联受端电网的电压弹性评估方法[J].高压电器,2023,59(4):90-97. ZHANG Ningyu,ZHAO Xin,ZHOU Qian,et al.Voltage-resilience assessment method for AC/DC hybrid receiving-end power grid[J].High Voltage Apparatus,2023,59(4):90-97.
    [9] KAWABE K,TANAKA K.Analytical method for short-term voltage stability using the stability boundary in the P-V plane[J].IEEE Transactions on Power Systems,2014,29(6):3041-3047.
    [10] 侯建兰,刘育权,谢小荣,等.一种量化评估暂态电压稳定性的指标与方法[J].电力自动化设备,2015,35(10):151-156. HOU Jianlan,LIU Yuquan,XIE Xiaorong,et al.Quantitative assessment index and method of transient voltage stability[J].Electric Power Automation Equipment,2015,35(10):151-156.
    [11] 易忠山,李凤婷,尹纯亚,等.直流闭锁下的多馈出直流外送系统无功分布与暂态过电压计算方法[J].电网与清洁能源,2024,40(12):10-17. YI Zhongshan,LI Fengting,YIN Chunya,et al.Reactive power distribution and transient overvoltage calculation method for the multi-outfeed DC system under DC blocking[J].Power System and Clean Energy,2024,40(12):10-17.
    [12] 徐泰山,薛禹胜,韩祯祥.感应电动机暂态电压失稳的定量分析[J].电力系统自动化,1996,20(6):12-19. XU Taishan,XUE Yusheng,HAN Zhenxiang.Quantitative analysis for transient voltage instability caused by induction motors[J].Automation of Electric Power System,1996,20(6):12-19.
    [13] 鲁广明,张璐路,马晶,等.基于时序特征选择与改进MSPCA算法的电网暂态稳定态势智能评估[J].电测与仪表,2023,60(6):125-133. LU Guangming,ZHANG Lulu,MA Jing,et al.Intelligent transient stability situation assessment of powergrid based on time-series feature selection and improved MSPCA algorithm[J].Electrical Measurement & Instrumentation,2023,60(6):125-133.
    [14] 薛禹胜,徐泰山,刘兵,等.暂态电压稳定性及电压跌落可接受性[J].电力系统自动化,1999,23(14):4-8. XUE Yusheng,XU Taishan,LIU Bing,et al.Quantitative assessments for transient voltage security[J].Automation of Electric Power Systems,1999,23(14):4-8.
    [15] 张起瑞,辛超山,李凤婷,等.多直流协调的新能源送端地区暂态过电压抑制策略[J].电力工程技术,2023,42(1):98-106. ZHANG Qirui,XIN Chaoshan,LI Fengting,et al.Multi DC coordinated transient overvoltage suppression strategy for high proportion new energy sending terminal area[J].Electric Power Engineering Technology,2023,42(1):98-106.
    [16] SUN H D,ZHOU X X.A quick criterion on judging short-term large-disturbance voltage stability considering dynamic characteristic of induction motor loads[C]//2006 International Conference on Power System Technology.Chongqing,China.IEEE,2006:1-6.
    [17] 潘晓杰,徐友平,解治军,等.堆栈式集成学习驱动的电力系统暂态稳定预防控制优化方法[J].发电技术,2023,44(6):865-874. PAN Xiaojie,XU Youping,XIE Zhijun,et al.Power system transient stability preventive control optimization method driven by stacking ensemble learning[J].Power Generation Technology,2023,44(6):865-874.
    [18] 王玲,朱远哲,杜婉琳,等.基于空间矢量变换与谱聚类的电压暂降事件数据空间聚合方法[J].供用电,2024,41(10):75-83. WANG Ling,ZHU Yuanzhe,DU Wanlin,et al.Spatial aggregation method for voltage sags event data based on space vector transform and spectral clustering[J].Distribution & Utilization,2024,41(10):75-83.
    [19] 薛安成,周健,刘瑞煌,等.采用多二元表判据的实用暂态电压稳定裕度指标研究[J].中国电机工程学报,2018,38(14):4117-4125+4317. XUE Ancheng,ZHOU Jian,LIU Ruihuang,et al.A new practical transient voltage stability margin index based on multiple-two-element notation criterion[J].Proceedings of the CSEE,2018,38(14):4117-4125+4317.
    [20] GLAVIC M,VAN CUTSEM T.Wide-area detection of voltage instability from synchronized phasor measurements.part I:principle[J].IEEE Transactions on Power Systems,2009,24(3):1408-1416.
    [21] 刘建锋,姚晨曦,陈乐乐.基于门控时空图神经网络的电力系统暂态稳定评估[J].电力科学与技术学报,2023,38(2):214-223. LIU Jianfeng,YAO Chenxi,CHEN Lele.Power system transient stability assessment based on gating spatial temporal graph neural network[J].Journal of Electric Power Science and Technology,2023,38(2):214-223.
    [22] SUNITHA R,KUMAR R S,MATHEW A T.Online static security assessment module using artificial neural networks[J].IEEE Transactions on Power Systems,2013,28(4):4328-4335.
    [23] XU Y,ZHANG R,ZHAO J H,et al.Assessing short-term voltage stability of electric power systems by a hierarchical intelligent system[J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(8):1686-1696.
    [24] ZHU L P,LU C,SUN Y Z.Time series shapelet classification based online short-term voltage stability assessment[J].IEEE Transactions on Power Systems,2016,31(2):1430-1439.
    [25] ZHU L P,LU C,DONG Z Y,et al.Imbalance learning machine-based power system short-term voltage stability assessment[J].IEEE Transactions on Industrial Informatics,2017,13(5):2533-2543.
    [26] 杨维全,朱元振,刘玉田.基于卷积神经网络的暂态电压稳定快速评估[J].电力系统自动化,2019,43(22):46-51+136. YANG Weiquan,ZHU Yuanzhen,LIU Yutian.Fast assessment of transient voltage stability based on convolutional neural network[J].Automation of Electric Power Systems,2019,43(22):46-51+136.
    [27] 谢小荣,贺静波,毛航银,等.“双高” 电力系统稳定性的新问题及分类探讨[J].中国电机工程学报,2021,41(2):461-475. XIE Xiaorong,HE Jingbo,MAO Hangyin,et al.New issues and classification of power system stability with high shares of renewables and power electronics[J].Proceedings of the CSEE,2021,41(2):461-475.
    [28] WADDUWAGE D P,WU C Q,ANNAKKAGE U D.Power system transient stability analysis via the concept of Lyapunov Exponents[J].Electric Power Systems Research,2013,104:183-192.
    [29] PINZóN J D,COLOMé D G.PMU-based online monitoring of short-term voltage stability using Lyapunov exponents[J].IEEE Latin America Transactions,2019,17(10):1578-1587.
    [30] GE H C,GUO Q L,SUN H B,et al.An improved real-time short-term voltage stability monitoring method based on phase rectification[J].IEEE Transactions on Power Systems,2018,33(1):1068-1070.
    [31] 王长江,姜涛,陈厚合,等.基于相位校正李雅普诺夫指数的电力系统暂态电压稳定评估[J].电工技术学报,2021,36(15):3221-3236. WANG Changjiang,JIANG Tao,CHEN Houhe,et al.Transient voltage stability assessment of power systems based on phase correction maximum Lyapunov exponent[J].Transactions of China Electrotechnical Society,2021,36(15):3221-3236.
    [32] HU J W,WANG T,WANG Z P,et al.Switching system’s MLE based transient stability assessment of AC/DC hybrid system considering continuous commutation failure[J].IEEE Transactions on Power Systems,2021,36(1):757-768.
    [33] BAI Z,KAISER E,PROCTOR J L,et al.Dynamic mode decomposition for compressive system identification[J].AIAA Journal,2019,58(2):561-574.
    [34] BAROCIO E,PAL B C,THORNHILL N F,et al.A dynamic mode decomposition framework for global power system oscillation analysis[J].IEEE Transactions on Power Systems,2015,30(6):2902-2912.
    [35] ALASSAF A,FAN L L.Randomized dynamic mode decomposition for oscillation modal analysis[J].IEEE Transactions on Power Systems,2021,36(2):1399-1408.
    [36] ZHOU S Y,YANG D Y,CAI G W,et al.Ambient data-driven online tracking of electromechanical modes using recursive subspace dynamic mode decomposition[J].IEEE Transactions on Power Systems,2023,38(6):5257-5266.
    [37] NANDANOORI S P,GUAN S,KUNDU S,et al.Graph neural network and koopman models for learning networked dynamics:a comparative study on power grid transients prediction[J].IEEE Access,2022,10:32337-32349.
    [38] GONG X,WANG X Z,JOOS G.An online data-driven method for microgrid secondary voltage and frequency control with ensemble koopman modeling[J].IEEE Transactions on Smart Grid,2023,14(1):68-81.
    [39] YANG D Y,GAO H,CAI G W,et al.Synchronized ambient data-based extraction of interarea modes using Hankel block-enhanced DMD[J].International Journal of Electrical Power & Energy Systems,2021,128:106687.
    [40] 赵兵,徐式蕴,兰天楷,等.新型电力系统标准算例(三):电压稳定CSEE-VS[J].中国电机工程学报,2024,44(21):8353-8364. ZHAO Bing,XU Shiyun,LAN Tiankai,et al.Benchmark for AC-DC hybrid system with high penetration of renewables (Ⅲ):voltage stability benchmark CSEE-VS[J].Proceedings of the CSEE,2024,44(21):8353-8364.
    [41] WANG L X,YANG D Y,CAI G W,et al.Synchronized-ambient-data-driven participation-factor-based generation rescheduling strategy for enhancing the damping level of interconnected power systems[J].International Journal of Electrical Power & Energy Systems,2023,146:108740.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张秀琦,刘鸿清,王立强,李 勇,高 晗.基于Koopman算子的新能源高占比电网暂态电压失稳识别方法[J].电力科学与技术学报英文版,2025,40(2):10-20,41. ZHANG Xiuqi, LIU Hongqing, WANG Liqiang, LI Yong, GAO Han. Transient voltage instability identification based on Koopman operator in power grid with a high proportion of renewables[J]. Journal of Electric Power Science and Technology,2025,40(2):10-20,41.

Copy
Share
Article Metrics
  • Abstract:114
  • PDF: 109
  • HTML: 0
  • Cited by: 0
History
  • Online: June 06,2025
Article QR Code