双源型纯电动汽车能量管理优化策略

唐 强,汤 赐,曾云龙,王 勇

(长沙理工大学电气与信息工程学院,湖南长沙 410114)

摘 要:驾驶意图是复合型能源汽车能量分配的重要影响因素,同时考虑到需求功率的低频部分冲击性小,可由蓄电池优先承担,高频部分冲击性大可由超级电容优先承担。提出融合驾驶意图识别的纯电动汽车功率分配控制方法,使得在传统控制策略中只考虑"车"因素基础上,增加考虑"人"的因素。与传统控制策略对比,所提出的策略蓄电池的输出电流更加平滑,功率波动降低了 23.72%,超级电容输出功率波动增强,并测算该策略下整车单位里程能量耗损均值为 32.61 Wh/km。仿真结果表明,所提策略能更充分利用储能系统的动力特性,有效延长蓄电池寿命。
 关 键 词:驾驶意图识别;自适应调整;整车能量耗损;能量管理

DOI:10.19781/j.issn.1673-9140.2022.04.018 中图分类号:TM912 文章编号:1673-9140(2022)04-0161-08

Research on energy management strategyimprovement of dual source pure electric vehicle

TANG Qiang, TANG Ci, ZENG Yunlong, WANG Yong

(School of Electrical & Information Engineering, Changsha University of science & technology, Changsha 410114, China)

Abstract: Driving intention is an important factor affecting the energy distribution of hybrid energy vehicles. Considering that the low-frequency part of the demanded power has less impact, which can be borne by the battery first, and the high-frequency part has more impact, which can be borne by the supercapacitor first. A hybrid electric vehicle power distribution control method based on driving intention recognition is proposed, which increases the consideration of the "human" factor based on of only considering the "vehicle" factor in the traditional control strategy. Compared with the traditional control strategy, the battery's output current in the proposed strategy is smoother, the power fluctuation is reduced by 23.72%, and the output power fluctuation of the supercapacitor is enhanced. Under this strategy, the average energy consumption per unit mileage of the whole vehicle is 32.61 Wh/km. The simulation results show that the proposed strategy can make full use of the dynamic characteristics of the energy storage system and effectively prolong the battery life.

Key words: driving intention recognition; adaptive adjustment; vehicle energy consumption; energy management

电动汽车具有节能环保的优势,这使得电动汽 车发展成为一种必然趋势,但单一动力源蓄电池驱 动存在缺陷,动力电池比能量大续航能力强,但功率 密度低、大电流充放电能力差、循环寿命短。超级电 容功率密度大可以承受大电流频繁充放电且循环寿 命长,但比能量极低续航能力差,因此复合电源系统

收稿日期:2021-03-11;修回日期:2021-06-18

基金项目:湖南省电动交通与智能配网工程技术研究中心开放基金(2015TP2001);湖南省自然科学基金(2017JJ2265)

通信作者: 唐 强(1996-), 男, 硕士研究生, 主要从事电源研制、系统仿真研究; E-mail: 1142315585@qq. com

的使用可使得超级电容和蓄电池优势互补,由于复 合电源的使用,能量管理策略(energy management strategy, EMS)的制定是复合电源系统功率分配的 核心,决定了车辆动力性和经济性^[1]。

目前,能量管理策略可分为基于规则类、基于滤 波类和基于优化类。众多学者对能量管理策略进行 了应用与改进,文献[2]基于确定规则设计了车辆在 启动加速、巡航和制动减速各阶段的逻辑门限控制 策略,改善了控制效果且丰富了确定规则的设计;文 献[3]采用基于模糊规则的模糊控制,通过遗传算法 优化模糊控制隶属度函数,提高了制动能量回收效 率;文献「4]基于滤波控制,结合考虑超级电容的荷 电状态(state of charge, SOC)设计实现能量动态分 配控制,有效地降低了高频分量对于蓄电池的冲击; 基于优化的管理方法分为全局优化和实时优化,文 献[5]等基于全局优化算法 DP 算法优化电动汽车 的能量分配,有效地提高了能量利用率,但是存在 "维数灾难"现象即随着状态变量和控制变量的增加 算法求解时间呈指数型增长,因此求解效率低、实时 性不佳;文献[6]采用实时优化方法提出了实时非线 性模型预测控制器优化能量分配,在降低能耗的同 时减少了计算量;文献「7]采用实时优化方法应用于 自适应巡航控制,在模型预测控制框架下设计了增 量式自适应模型预测(model predictive control, MPC) 控制器,有效地提高了自适应巡航控制性能。

综上可知,目前能量管理研究主要围绕车辆动 力性能开展能量分配,基于规则和滤波的方法易于 车载实现,且不需要行驶信息的储备和庞大计算,能 量分配响应快;缺点是无法保证能量损耗最优。基 于全局优化能获得优化控制效果,但是需要行驶工 况的先验知识且存在"维数灾难",工作在离线状态。 实时优化由于模型预测、神经网络等预测可减少行 驶信息的储备和庞大计算,但较依赖于预测模型精 度,目前处于快速发展阶段。近些年来,汽车愈发从 功能型向智能型升级转变^[8],智能汽车通过车载传 感器系统和信息终端实现与人、车、路等信息交换, 使车辆更加智能化。驾驶意图识别是未来智能汽车 的重要发展方向之一,本文基于规则、滤波控制,综 合规则、滤波控制的优点,增加考虑驾驶员意图的因 素,通过驾驶意图的识别自适应调整能量分配,使得 在传统控制策略中只考虑"车"因素基础上,增加考 虑"人"的因素。将工况分类为高速公路、城市快速 公路、郊区路况、拥堵路况,几乎涵盖实际驾驶中的 所有工况类型,在不同类型工况下仿真,更加全面地 分析所提策略的工作情况。

1 融合驾驶意图识别的功率分配控制
 策略工作原理

1.1 复合储能系统拓扑结构

复合储能系统拓扑结构一般可以分为被动并 联、全主动和半主动结构^[9]。本文采用超级电容及 电池的半主动构型,其结构特征为 DC/DC 变换器 与超级电容的输出端相连后与蓄电池并联在母线两 端。相比于其他构型,该构型超级电容能够在宽电 压范围内工作且总线的电压能维持相对稳定,采用 一个 DC/DC 变换器可降低成本^[10-11]。在电机的驱 动和发电的不同状态下,工作在不同模式的双向 DC/DC 参与控制蓄电池和超级电容充放电,复合储 能系统依据制定的 EMS 实现协调工作,复合储能 系统半主动构型拓扑结构如图 1 所示。

本文多维量化分析复合电源工作情况,融合多 维度输出功率、输出功率标准差、输出功率标准差相 对值、整车能耗等构建量化指标,建模如下。

1)功率波动剧烈程度量化分析。蓄电池/超级 电容输出功率标准差为S,横向比较不同工况下蓄 电池/超级电容输出功率波动情况的标准差相对值 为Rs,即

$$S = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (P(i) - \bar{p})}$$
(1)

$$P_{\rm av} = \frac{\int_{0}^{1} P \,\mathrm{d}t}{T} \tag{2}$$

$$R_{s} = \frac{S}{P_{av}} \tag{3}$$

其中,T为循环工况时长。

2)整车系统能量耗损量化分析。车辆在行驶过 程中的整车系统能量耗损主要为超级电容、蓄电池 内阻损耗以及 DC-DC 变换器的能量损耗,归集为

$$E_{\rm AL}(k) = \frac{1}{3\ 600} \sum_{k=1}^{N} ((P_{\rm sl}(k) + P_{\rm bl}(k) + P_{\rm dl}(k)) \cdot \Delta t)$$
(4)

其中

$$P_{\rm sl} = \int_0^T I_{\rm sc}^2(t) \cdot R_{\rm sc} dt$$
 (5)

$$P_{\rm bl} = \int_0^T I_{\rm bat}^2(t) \cdot R_{\rm bat} dt \qquad (6)$$

$$P_{\rm dl} = \int_{0}^{T} (1 - h_{\rm DC} t) \cdot P_{\rm DC} t \, dt \tag{7}$$

式(4)~(7)中 N 为切分的块数;仿真步长 D_t 为 1 s; R_{sc} 为超级电容内阻; R_{bat} 为超级电容蓄电池内 阻; $I_{sc}(t)$ 、 $I_{bat}(t)$ 分别为超级电容、蓄电池在 t 时刻 的电流; $\eta_{DC}(t)$ 为 DC/DC 转换器效率; $P_{DC}(t)$ 为 DC/DC 转换器在 t 时刻的输出功率。

1.2 自适应调整能量分配机理

驾驶意图——模糊逻辑自适应控制策略结构如 图 2 所示。融合驾驶意图识别自适应调整能量分配 的物理机理:激进型驾驶意图下可将能量适当多分 配给超级电容,从而保护蓄电池;平和型能量需求下 可将更多的能量分配给蓄电池,从而维持超级电容 剩留一定能量,以备在启动或上坡时使用。该策略

图 2 驾驶意图——模糊逻辑自适应控制策略结构 Figure 2 Driving intention-fuzzy logic adaptive control strategy structure 的控制过程可分为驾驶员驾驶意图识别、低通滤波 器滤波和能量分配三部分,其中,驾驶意图识别由驾 驶风格识别、加速意图识别构成的多模糊识别控制 器实现,通过设置合理的模糊规则,输出模糊控制结 果。由于低通滤波器的截至频率由时间常数决定, 故通过驾驶意图识别结果自适应调整时间常数调整 能量分配。该策略结合超级电容和蓄电池 SOC 的 实际情况且融合驾驶意图充分发挥蓄电池高比能量 和超级电容高比功率动力特性,可有效地延长蓄电 池寿命。

2 融合驾驶意图识别的功率分配控制 策略实现过程

2.1 驾驶意图识别

驾驶意图无法用精确模型描述,模糊控制对解 决无法用数学描述的模型特别适用,控制结果符合 人的思维以及经验,而且具有鲁棒性高的特点^[12], 故采用模糊控制识别驾驶员驾驶意图。

2.1.1 驾驶风格识别

驾驶风格分为动力性(Power)和经济性 (Ecomic)需求。车辆加速度均值E(a(t))表示某 时间片段内对加速度取平均,表征该时间片段内速 度的变化率。E(a(t))越大表征速度变化快,驾驶 员变换速度频繁,驾驶风格偏向动力性;E(a(t))越 小,驾驶员速度变化较平稳,其驾驶分格偏向平和的 经济型。由于所获得参数中若出现极端值情况,均 值将失去代表性,所以引入汽车加速度标准差 $\sigma(a(t))$,共同识别驾驶员偏向于动力型驾驶需求或 经济型驾驶需求,从而准确地识别不同的驾驶风格。

$$E(a(t)) = \frac{\sum a(t-n)\cdots a(t-2)}{n} + \frac{a(t-1)+a(t)}{n}$$
(8)

 $\sigma(a(t)) = \sqrt{E\{[a(t) - E(a(t))]^2\}}$ (9) 式中 a(t)为当前加速度采样值; n 为加速度取样 个数,考虑实时性,本文取 t 时刻过去 3 s 的加速 度,采样间隔为 1 s,故 n 取 3。

获得识别参数后进行驾驶风格识别的模糊控制器设计。模糊输入、输出论域: $E(a(t)) = [-1, 1], \sigma(a(t)) = [0,1], D_s = [-1,1];所对应的模糊$

子集: $E(a(t)) = \{ NB(负小), NM(负中), S(-般), PM(正中), PB(正大) \}, \sigma(a(t)) = \{ S(加速$ 度标准小), M(加速度标准中), B(加速度标准 $大) \}, D_s = \{ Economic(动力型), Power(经济型) \}, m速意图识别规则如表 1 所示, 模糊规则的输出界$ 面如图 3 所示。

表1 加速意图识别模糊控制器规则

Table 1	Fuzzy controller rules for accelerating
	intention recognition

抽油库护店	加速度标准差			
加速度均值 -	S	М	В	
NB	Power	Power	Power	
NM	Economic	Economic	Power	
S	Economic	Economic	Economic	
PM	Economic	Economic	Power	
PB	Economic	Power	Power	

2.1.2 加速意图识别

在行驶过程中,根据实际的路况、事态等多维因素,驾驶员有不同的加速意图。加速意图表征了对转矩需求和加速的紧急程度。通过对加速踏板开度的表征参数和加速踏板变化率的表征参数,经由模糊推理识别出加速意图。本文加速踏板的开度以加速时的加速度 A_{acc} 表征,加速踏板的变化率以加速度冲击影响因子 J_f 表征,A_{acc}、J_f 越大则表示加速意图越强。

$$J_{\rm f} = \frac{J(t)}{\overline{J}} \tag{10}$$

式中 $J(t) = d^2 V(t)/dt^2$,为加速度冲击系数; J为各种路况下的平均冲击系数。

加入 <u></u> 加入 <u></u> 一 是因为不同路况下的冲击系数呈现差 异化分布,即把路况考虑进来,使得冲击影响因子表 征加速度冲击程度更具实际含义。不同工况下平均 冲击系数如表 2 所示,高速和城市快速公路工况平 均冲击系数低,加速踏板变化次数少;郊区和拥堵工 况平均冲击系数高,加速踏板变化频繁,这与实际驾 驶感受相符。

表2 不同工况下平均冲击系数

Table 2 Average impact coefficient under

different working conditions

工况	类比工况	平均冲击系数
US06-HWY	高速公路	0.017 8
HWFET	城市快速公路	0.032 4
UDDS	郊区路况	0.0797
NYCC	拥堵路况	0.130 3

在加速意图模糊识别器的设计中,输入和输出 变量的论域: $A_{acc} = [0,1], J_{f} = [-1,1], M_{acc} = [0,$ $1];所对应的模糊子集:<math>A_{acc} = \{SG(缓慢加速), MG(-般加速), BG(紧急加速)\}, J_{f} = \{TB(负小), TM(负中), S(一般), HM(正中), HB(正大)\}, M_{acc} = \{YS(加速意图弱), YM(加速意图中), YB(加速意$ $图强)}。加速意图识别规则如表 3 所示, 所用模糊$ 规则的输出界面如图 4 所示。

表3 加速意图识别模糊控制器规则

 Table 3 Fuzzy controller rules for accelerating

intention recognition

加速踏板	加速踏板开度变化率				
开度	ΤB	ТМ	S	HM	HB
SG	YS	YS	YS	YS	YM
MG	YS	YS	YM	YM	YB
BG	YS	YM	YM	YB	YB

2.2 滤波常数自适应调整

驾驶风格识别和加速意图的识别结果作为输入,经由滤波器时间常数模糊控制器控制时间常数, 完成驾驶意图识别模块。在低通滤波器时间常数模 糊控制器的设计中,输入、输出变量的论域: $D_s =$ [-1,1], $M_{acc} =$ [0,1],时间常数 $\tau =$ [5,10];所对 应的模糊子集 $D_s =$ {Economic(动力型)、Power(经 济型)}, $M_{acc} =$ {YS(加速意图弱)、YM(加速意图 中)、YB(加速意图强)}, $\tau =$ {S(小)、M(中)、 B(大)}。所用模糊规则的输出界面如图5所示。

2.3 主能量控制器规则设计

主能量分配控制器采用经典 Mamdani 结构的 三输入一输出模糊控制器,其输入分别为 $P_r =$ [-0.2,1]、 $S_b =$ [0.2,1]、 $S_c =$ [0.2,1];输出变量 为 $K_b =$ [0,1]。对于 P_r ,由于实际域与论域不对 应,所以实际域要转换为论域^[13]; S_b 、 S_c 、 K_b 论域与 实际域一致,不用转换。输入量与输出量之间的关 系如图 6 所示。

图6 输入量与输出量之间的关系

3 建模与仿真

3.1 复合电源功率分配控制策略建模

参考《新建纯电动乘用车企业管理规定》纯电动 汽车技术要求,选择小型车辆进行研究,根据规定中 的技术要求进行参数匹配,仿真车辆所用的主要参 数如表4所示。

表4 仿真车辆主要参数

Table 4 M	lain parameters	of	simu	lation	vehicle
-----------	-----------------	----	------	--------	---------

组件	参数	单位	数值
	整车总质量	kg	1 183
	整车整备质量	kg	943
	迎风面积	m^2	2.19
	空气阻力系数		0.32
车体	轴距	m	2.6
	前轴到质心的距离	m	1.04
	后轴到质心的距离	m	1.56
	质心高度	m	0.5
	旋转质量转换系数	_	1.25
左於	滚阻系数	_	0.02
平北	车轮滚动半径	m	0.262
主减速器	主减速比		5.46
变速箱	固定速比		1
传动系统	传动效率		0.96

基于驾驶意图识别结果、滤波常数自适应调整 和主能量控制器,搭建控制策略 Simulink 模型并嵌 入到 Advisor 复合电源车辆顶层模型完成仿真,控 制策略 Simulink 模型如图 7 所示。

3.2 仿真结果分析

不同工况下驾驶员的驾驶意图具有不同特点, 为更全面地分析所提策略的工作情况,在不同类型 工况下进行仿真(策略1、2分别为传统、本文所提策 略)。以极端拥堵工况 NYCC 为例,图像化仿真结 果,其他类型工况的控制结果以表格形式归集。

3.2.1 驾驶意图识别控制结果

基于搭建的驾驶工况、驾驶意图识别模型,得到 驾驶意图识别结果,该结果控制低通滤波器时间常 数,时间常数分布情况如图 8 所示,可知驾驶意图识 别控制器能识别驾驶意图,并能自适应调整低通滤 波器滤波常数,从而调整能量分配。

下驾驶意图控制结果

Figure 8 Control results of driving intention under NYCC condition (similar to congestion condition)

3.2.2 蓄电池输出功率

NYCC 工况下蓄电池输出功率变化情况如图 9 所示,在整体趋势方面,采用策略 2 蓄电池输出功率 较策略 1 更加平滑。4 种类型工况的蓄电池输出功 率指标如表 5 所示,其他工况下的蓄电池表现与 NYCC 工况类同。

表5 蓄电池输出功率评价指标

Table 5 Evaluation index of battery

		ou	tput powe	er		kW
			4	俞出功率		
工况	策略	最大	最小	峰谷差	方差绝 对值	标准差 相对值
US06-HWY	1	66.015	-16.175	82.189	13.536	0.874
(高速公路)	2	65.683	-7.385	73.068	11.539	0.716
HWFET(城	1	29.964	-10.812	40.776	6.641	0.691
市快速公路)	2	35.006	-0.622	35.628	5.393	0.519
UDDS	1	33.766	-7.517	41.282	5.786	1.332
(郊区路况)	2	32.929	-1.169	34.098	5.343	1.125
NYCC	1	29.731	-5.742	35.473	3.818	2.129
(拥堵路况)	2	20.047	0.000	20.047	2.846	1.348

结合表 5 可知,采用策略 1、2 时输出功率标准 差分别为 3.818、2.846 kW,采用策略 2 较策略 1 蓄 电池整体波动减小 25.46%。在输出功率波动范围 方面,策略 1 输出功率(kW)波动范围为[-5.742, 29.731],峰谷差为 35.473 kW;策略 2 输出功率 (kW)波动范围为[0,20.047],峰谷差为 20.047 kW,较策略 1 降低了 43.49%。在 NYCC 工况下, 控制策略 2 将制动回收能量全分配给超级电容,蓄 电池吸收为零,这是由于走走停停,制动回收能量较 小,超级电容的能量储备有利于在该工况下的车辆 频繁启动。综上表明,无论是蓄电池输出功率的整 体波动剧烈程度还是波动的范围均降低,有利于延 长蓄电池的使用寿命。

由表 5 可得,横向对比各工况下的蓄电池输出 功率波动情况,在 US06-HWY(高速公路,0.716)和 HWFET(城市快速公路,0.519)工况下,蓄电池输 出功率标准差相对值小,而在 UDDS(郊区路况, 1.125)和 NYCC(拥堵路况,1.348)工况下,蓄电池 输出功率标准差相对值大。原因是蓄电池在高速和 城市快速公路工况下车速高且相对平稳,所以蓄电 池输出功率较平滑。采用策略 2 时蓄电池输出功率 标准差相对值的均值为 0.927。

3.2.3 超级电容输出功率

NYCC工况下超级电容输出功率变化情况如图 10 所示,在整体趋势方面,采用策略 2 时超级电容输出功率较策略 1 时波动更加剧烈。4 种类型工

167

况的超级电容输出功率评价指标如表 6 所示,可知 采用策略 1、2 时超级电容输出功率标准差分别为 3.624、5.849 kW,整体波动提高了 61.40%。在输 出功率波动范围方面,可知采用策略 1 时输出功率 (kW)波动范围为[-4.124 1,22.88],峰谷差为 27.003 kW,策略 2 的输出功率(kW)范围波动为 [-15.373,32.562],峰谷差为 47.935 kW,提高了 77.52%。策略 2 更加充分发挥超级电容承受大功 率波动的作用。

表6 超级电容输出功率评价指标

Table 6Evaluation index of supercapacitor

		ou	tput pow	er		kW
				输出功率		
工况	策略	最大	最小	峰谷差	标准差 绝对值	标准差 相对值
US06-HWY	1	64.983	-18.261	83.244	9.075	3.463
(高速公路)	2	67.463	-44.563	112.027	13.555	5.190
HWFET(城	1	19.821	-8.757	28.578	3.407	2.532
市快速公路)	2	23.289	-28.794	52.084	6.032	6.358
UDDS	1	22.030	-5.184	27.214	2.899	3.637
(郊区路况)	2	33.336	-20.606	53.941	5.422	6.999
NYCC	1	22.880	-4.124	27.003	3.624	1.996
(拥堵路况)	2	32.562	-15.373	47.935	5.849	3.554

3.2.4 整车系统能量耗损

整车能量耗损可作为评价车辆经济性重要指标 之一,根据式(4)~(7),可得整车能量耗损如表7所 示,不同工况下整车能耗呈现差异化分布,采用所提 策略的整车系统单位里程能量耗损均值为32.61 Wh/km。

表7 策略2下整	车能	量耗损	页
----------	----	-----	---

Table 7Vehicle energy loss under strategy 2

工况	蓄电池/ Wh	超级电 容/Wh	DC/DC 变换器/Wh
US06-HWY(高速公路)	266.414	64.130	109.381
HWFET(城市快速公路)	169.413	28.301	216.947
UDDS(郊区路况)	111.379	45.114	137.817
NYCC(拥堵路况)	11.518	15.757	42.898
工况	系统总能量 耗损/Wh	里程数/ km	单位里程能量 耗损/(Wh/km)
工况 US06-HWY(高速公路)	系统总能量 耗损/Wh 439.925	里程数/ km 10.042	单位里程能量 耗损/(Wh/km) 43.807
工况 US06-HWY(高速公路) HWFET(城市快速公路)	系统总能量 耗损/Wh 439.925 414.662	里程数/ km 10.042 16.512	单位里程能量 耗损/(Wh/km) 43.807 25.113
工况 US06-HWY(高速公路) HWFET(城市快速公路) UDDS(郊区路况)	系统总能量 耗损/Wh 439.925 414.662 294.310	里程数/ km 10.042 16.512 11.990	单位里程能量 耗损/(Wh/km) 43.807 25.113 24.547

4 结语

在确定半主动式复合电源系统拓扑后,建立整 车顶层模型,通过识别驾驶意图自适应调整滤波常 数,搭建能量管理模型,完成仿真。

1)在当下汽车从功能型向智能型升级转变的发展趋势背景下,研究融合驾驶意图识别的能量控制 策略具有重要意义。本文通过驾驶意图识别自适应 调整低通滤波器滤波常数,从而自适应调整模糊控 制能量分配。

2) 在整车能量耗损能耗方面,复合型电源纯电 动汽车在 US06-HWY(43.807 Wh/km)和 NYCC 工况(36.952 Wh/km)时能量耗损最大,而在 HW-FET(25.113 Wh/km)和 UDDS(24.547 Wh/km) 工况时能量耗损较小。采用所提策略控制的整车系 统单位里程能量耗损均值为 32.61 Wh/km。

3)在复合电源状态监测方面,采用所提策略(蓄 电池输出功率标准差相对值均值为 0.927)与策略 1 (1.215)相比较,蓄电池输出功率波动降低了 23.72%, 超级电容输出功率波动增强,所提策略更有利于发 挥超级电容削峰的积极作用,延长蓄电池寿命。

参考文献:

[1] 安小宇,李元丰,孙建彬,等.基于模糊逻辑的电动汽车 双源混合储能系统能量管理策略[J].电力系统保护与 控制,2021,49(16):135-142.

AN Xiaoyu, LI Yuanfeng, SUN Jianbin, et al. Energy

management strategy of a dual-source hybrid energy storage system for electric vehicles based on fuzzy logic [J]. Power System Protection and Control, 2021, 49 (16):135-142.

- [2] 杨丰,邓其军,朱傲.电动汽车无线充电的启动阶段控制 策略[J].电测与仪表,2020,57(24):108-115.
 YANG Feng, DENG Qijun, ZHU Ao. Start-up control strategy of electric vehicle wireless charging[J]. Electri-
- cal Measurement & Instrumentation, 2020, 57(24): 108-115.
 [3] 吴文传,张伯明,孙宏斌,等.主动配电网能量管理与分
 - 布式资源集群控制[J]. 电力系统自动化,2020,44(9): 111-118.

WU Wenchuan, ZHANG Boming, SUN Hongbin, et al. Energy management and distributed energy resources cluster control for active distribution networks[J]. Automation of Electric Power Systems, 2020, 44(9):111-118.

 [4]张军,张新源,吴俊兴,等.考虑户用光伏发电的家庭能量管理方法研究[J].电网与清洁能源,2020,36(2): 117-123.

ZHANG Jun, ZHANG Xinyuan, WU Junxing, et al. Study on household energy management methods considering household photovoltaic power generation [J]. Power System and Clean Energy, 2020, 36(2):117-123.

- [5] ZHANG Q, LI G. Experimental study on a semi-active battery-supercapacitor hybrid energy storage system for electric vehicle application[J]. IEEE Transactions on Power Electronics, 2020, 35(1):1014-1021.
- [6] GUO N Y, LENZO B, ZHANG X D, et al. A real-time nonlinear model predictive controller for yaw motion optimization of distributed drive electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (5): 4935-4946.
- [7] 吴迪,朱波,张农,等. 纯电动汽车 ACC 自适应权重优化
 策略[J]. 合肥工业大学学报(自然科学版),2020,43
 (8):1020-1026+1051.

WU Di, ZHU Bo, ZHANG Nong, et al. ACC optimization strategy based on adaptive weights for battery electric vehicle[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(8):1020-1026+1051.

[8] 韩峰,曾成碧,苗虹. 计及 EV 与可再生能源的家庭微电

网能源管理系统[J]. 电力科学与技术学报,2021,36 (1):79-86.

HAN Feng, ZENG Chengbi, MIAO Hong. Study on the energy management system of an electric vehicle and renewable energy in home micro-grid[J]. Journal of Electric Power Science and Technology, 2021, 36 (1):79-86.

[9] 杨培刚,周育才,刘志强,等. 基于 ADVISOR 的纯电动 汽车复合电源建模与仿真[J]. 电力科学与技术学报, 2015,30(3):66-71.
YANG Peigang, ZHOU Yucai, LIU Zhiqiang, et al. Modeling and simulation of pure electric vehicle with composite power source based on ADVISOR[J]. Journal of Electric Power Science and Technology, 2015, 30 (3):

66-71.
[10] 尹炳琪,马彬,杨朝红,等.融合路况信息的复合电源模型预测控制方法[J].电源技术,2020,44(4):557-561.
YIN Bingqi, MA Bin, YANG Chaohong, et al. Model predictive control method of hybrid energy storage based on route information[J]. Chinese Journal of Power Sources,2020,44(4):557-561.

- [11] 胡杰,刘迪,杜常清,等.电动汽车复合能源系统能量管 理策略研究[J]. 机械科学与技术,2020,39(10):1606-1614.
 HU Jie,LIU Di,DU Changqing, et al. Study on energy management strategy of hybrid energy storage system for electric vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39 (10):1606-1614.
- [12] 刘文光,毕善汕,徐畅. 纯电动汽车两挡 AMT 换挡策
 略研究[J]. 重庆理工大学学报(自然科学),2021,35
 (1):41-49.

LIU Wenguang, BI Shanshan, XU Chang. Shifting strategy for two-speed AMT of electric vehicle [J]. Journal of Chongqing University Technology (Natural Science),2021,35 (1):41-49.

[13] 姚堤照,谢长君,曾甜,等.基于多模糊控制的电电混合 汽车能量管理策略[J].汽车工程,2019,41(6):615-624+640.

YAO Dizhao, XIE Changjun, ZENG Tian, et al. Multifuzzy control based energy management strategy of battery/super-capacitor hybrid energy system of electric vehicles[J]. Automotive Engineering, 2019, 41(6): 615-624+640.