基于 Hausdorff Distance 算法的配电网 故障区段定位方法

黄天喜1,李 斌1,刘武能1,罗长斌1,蒋菊梅1,万山明2

(1.云南电网有限责任公司迪庆供电局,云南 香格里拉 674400;2.华中科技大学电气与电子工程学院,湖北 武汉 470000)

摘 要:为解决配电网小电流接地系统发生单相接地故障时故障区段定位困难的问题,结合故障线路中故障点两侧 零序电流方向相反的特点,提出一种基于 Hausdorff Distance 算法的配电网故障区段定位方法。该方法将零序电流 作为故障特征量,首先,对零序电流进行滤波,并通过小波包变换提取故障馈线各检测节点的零序电流小波近似序 列;然后,借助 Hausdorff Distance 算法分析得到各检测节点之间的零序电流小波近似序列偏差矩阵;最后,综合定 义一种偏差度表征各区段两侧的差异性,通过比较偏差度大小确定故障区段。仿真结果表明:该方法在不同的故障 条件下均能实现正确定位,同时还适用于复杂的配网结构中,便于配电网运行人员迅速对故障线路进行检修和维 护,保障电力系统安全可靠运行。

关键 词:配电网;故障区段定位;Hausdorff Distance;小波包变换;零序电流偏差矩阵
 DOI:10.19781/j.issn.1673-9140.2022.05.013 中图分类号:TM73 文章编号:1673-9140(2022)05-0115-09

A fault section location method of distribution networks based on Hausdorff Distance algorithm

HUANG Tianxi¹, LI Bin¹, LIU Wuneng¹, LUO Changbin¹, JIANG Jumei¹, WAN Shanming²

(1.Diqing Power Supply Bureau of Yunnan Power Grid Co., Ltd., Shangri-La 674400, China; 2.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 470000, China)

Abstract: In order to cope with the difficulty in locating the fault section when single-phase-to-ground fault occurs in the small current grounding system of a distribution network, this paper proposes a fault section location method based on the Hausdorff Distance algorithm according to the characteristics that the zero sequence currents on both sides of the fault point are opposite in the fault line. In this method, the zero sequence current is selected as the fault feature firstly, and is then filtered to ensure the wavelet approximate sequence of the zero sequence current of each detection node of the fault feeder can be extracted by wavelet packet transform. Next, the deviation matrix of the wavelet approximate sequence of the zero sequence current among each detection node is obtained by Hausdorff Distance algorithm. Finally, a deviation degree is defined to represent the difference between the two sides of each section, and the fault section can thus be determined by comparing the relevant deviation degree. The simulation results show that the method can achieve precise positioning under different fault conditions, and it is also suitable for more complex

收稿日期:2021-07-02;修回日期:2021-09-11

基金项目:中国南方电网有限责任公司科技项目(051500KK52180009)

通信作者:黄天喜(1982—),男,高级工程师,主要从事电网规划、电网运行方式与继电保护研究;E-mail:378338210@qq.com

distribution network structures. Both of which are convenient for staff to quickly repair and maintain the fault lines, and ensure the safe and reliable operation of power systems.

Key words: distribution network; fault section location; Hausdorff Distance; wavelet packet transform; zero sequence current deviation matrix

中国的配电网中性点大多采用经消弧线圈接 地方式,以防止单相接地时产生过大的故障电流烧 坏设备。但是由于消弧线圈的补偿作用使得发生 故障时系统电气特征值不明显,从而使得配电网故 障定位和识别十分困难,若未能及时排除故障,系 统长时间带故障运行,又容易发展为相间故障,扩 大故障范围。因此,及时对小电流接地系统单相接 地故障进行故障检测和区段定位具有重要的实际 意义。

目前,国内外区段定位方法主要分为3类:基于 外加信号的定位;基于稳态分量的定位;基于暂态 分量的定位。其中基于外加信号的定位方法成本 较高,基于稳态特征量的定位方法由于谐振接地系 统单相接地故障时故障量微弱,稳态量提取困难, 定位效果较差,而基于暂态分量的定位方法在丰富 的故障暂态信号特征基础上实现定位,具有不受故 障合闸角和噪声的影响特点,其应用前景广阔。基 于暂态量的方法包含双端行波法[1]、能量法[2]、频率 法[3]和相关系数法[4-5]等,文献[6]定位精度高,受系 统运行环境影响较小,已成功应用在输电线路保护 中,但配电网分支众多,行波信号获取困难;文献 [7]利用S变换计算各区段零序电流能量特征,利 用能量值差异表征各区段差异,保护简单易于实 现,但在高频部分S变换频域分辨不准确,收敛程 度不够,存在定位盲区;文献[8]在故障零序电流频 谱特征的分析基础上,提出了利用各区段重心频率 差异定位的保护方法,该方法不受消弧线圈的影 响,但其可能存在着故障点下游重心频率选取困难 的不足;文献「9]综合利用零模电流的相关性系数 差异进行定位,但并未考虑发生频率较高且较为复 杂的缆—线混合线路故障和高阻接地故障情况。

本文在对复杂配电网故障点两侧零序电流研 究的基础上,提出一种基于 Hausdorff Distance 算 法的配电网故障区段定位方法。该方法通过在各 线路上设置若干监测点,然后对各监测点处提取到 的零序电流进行小波包变换,从而分析得到各监测 点处对应的小波近似序列,随后借助 Hausdorff Distance 算法计算得到各监测点间的零序电流偏差 矩阵,最后综合定义一种偏差度表征各区段之间的 差异性,从而实现故障区段定位。仿真结果表明: 本文所提方法在不同故障工况条件下均能准确定 位出故障区段,且故障区段与非故障区段偏差度特 征值数值相差较大,判别裕度大,定位准确性较高。

1 单相接地零序网络分析

1.1 暂态零序网络

某一配电网系统发生单相接地故障时的暂态 零序网络如图1所示,该配电网中性点采用经消弧 线圈接地方式^[10-12],由于系统在发生单相接地故障 时,消弧线圈对故障暂态电流影响较小,此时对系 统暂态零序网络电气量故障变化情况进行分析,有 助于完成故障选线与定位^[13-16]。

图 1 中,小电流接地系统共有 3 条馈线,每条馈 线上均设有 4 个监测点,第 *i* 条馈线上的监测点分 别设为 *A_i*、*B_i*、*C_i*、*D_i*。假如单相接地故障发生在 第 1 条馈线的第 2 段监测范围内,即 *B*₁*C*₁区间内, 设故障点为 *K*,此时 *K* 点相当于一个附加虚拟电 源,电势最高,零序电流由 *K* 点流出,由图 1 可知, 与下游在频率、幅值或方向上均存在差异[17-19]。

图2 单相接地故障暂态零序电流分布

此时,故障点上、下游的零序电流为

$$\dot{I}_{01}' = \dot{I}_{L} + \dot{I}_{\Sigma} = \frac{\dot{U} - \dot{I}_{01}' X_{1}}{3R_{L}} + \frac{\dot{U} - \dot{I}_{01}' X_{1}}{X_{C_{\Sigma}}} \quad (1)$$

$$\dot{I}_{01}'' = \frac{U}{X_{c_{01}'} + X_2} \tag{2}$$

式(1)中,由于两监测点之间相对整个系统来说距 离短,对地电容电流比起健全线路电容电流之和数 值较小,可以忽略不计,即 X₁、X₂均约等于 0。因 此,可得到故障点上游的 A、B 点电流大小方向几 乎相同,C 点和D 点电流大小方向几乎相同^[20-22]。

由式(2)进一步分析可知,故障点上游检测点 的暂态零序电流为该检测点到母线段与所有健全 线路的对地电容电流之和,而故障点下游检测点为 检测点到线路末端的对地电容电流。由于 $C_{\Sigma} > C_{01}^{\prime\prime}$,因此故障点上游电流值大于故障点下游电 流值。

1.2 故障点上下游波形特征

如文 1.1 节所述,假设接地故障发生 B₁C₁区间内,故障点 K 上、下游零序电流分量波形如图 3 所示。4 个监测点的小波包近似序列如图 4 所示。

由图 4 可知,提取故障点上、下游暂态零序电流 分量的小波包近似序列进行分析,可以有效区分故 障点上、下游分界区域,从而判别出故障发生的 区段。

图3 故障点K上、下游零序电流分量分布

Figure 3 The components distribution diagram of upstream and downstream zero sequence current in fault point *K*

图4 各监测点的小波包低频重构系数

Figure 4 The wavelet packet low frequency reconstruction coefficient map of each monitoring point

2 区段定位算法模型

2.1 小波包算法

小波包变换基于小波变换技术的基础,弥补了 其在高频信号处理的缺陷,有利于稳态和暂态信号 的处理^[23-25]。

小波包变换函数为

$$W_{i,k}^{n}(t) = 2^{\frac{i}{2}} W^{n}(2^{i}t - k)$$
(3)

其中,j表示索引尺度,k表示转换操作。

最开始的2个小波包函数一般作为尺度函数和

小波函数,即

$$W_{0,0}^{0}(t) = \varphi(t)$$
 (4)

$$W_{0,0}^{1}(t) = \psi(t) \tag{5}$$

其中, $\varphi(t)$ 为正交尺度函数, $\psi(t)$ 为小波基函数。

当 *n* ≥ 2 时,相对应的小波包函数递归关系 如下:

$$W_{0,0}^{2n}(t) = \sqrt{2} \sum_{k} h(k) W_{1,k}^{n}(2t-k)$$
 (6)

$$W_{0,0}^{2n+1}(t) = \sqrt{2} \sum_{k} g(k) W_{1,k}^{n}(2t-k)$$
(7)

如上所述,由于小波包变换属于任意时频分析 方法,其可以十分准确分解高频和低频分量,特别 是能对高频部分进行分解具有极大的优势。

2.2 Hausdorff Distance 算法

目前在诸多领域中,对于几何对象之间的距离 是一种常用的计算方式,其大概分为6类,主要包括:点与点、点与曲线、点与曲面、曲线与曲线、曲线 与曲面以及曲面与曲面之间的距离计算。而在这 些计算方式中,Hausdorff Distance 是一类用于衡 量2组几何对象间相似程度的算法,主要用于考察 2幅图像之间的特异性差异。

假设在一个平面内有 2 条 C₁连续曲线 A、B,其 矢量方程为

$$A:A(a) \tag{8}$$

$$B:B(b) \tag{9}$$

其中,a、b 代表曲线A、B 的参数。由文献可知,曲 线A、B之间的 Hausdorff Distance 可以分为单向 和双向距离,其中曲线A、B之间单向 Hausdorff Distance 代表曲线A上面的某一点到曲线B最小 距离的最大值,即

 $h(A,B) = \max_{a \in A} \min_{b \in B} d(A(a),B(b)) \quad (10)$ 式中 d(A(a),B(b)) = ||A(a) - B(b)||,d(A(a),B(b))代表曲线 A 上面的某一点到曲线 B 的欧几里得距离。

同理,曲线 *B*上面的某一点到曲线 *A*最小距离的最大值,即

 $h(B,A) = \max\min d(A(a),B(b)) \quad (11)$

双向 Hausdorff 距离又称 Hausdorff 距离,则 集合 A、B之间的双向距离可表示为

 $\bar{h}(A,B) = \max\{h(A,B),h(B,A)\}$ (12) 由上文的公式分析可知, $A \setminus B$ 之间的 Hausdorff 距离大小可以对其相似进行表征,其中 $\bar{h}(A,B)$ 也称作点集合 $A \setminus B$ 之间的双向距离,是 Hausdorff 距离的最基本形式。也就是说,双向 Hausdorff 距离 $\bar{h}(A,B)$ 是单向距离h(A,B)和 h(B,A)两者中的较大者,它度量了2个点集间的 最大不匹配程度。 $\bar{h}(A,B)$ 越大,则2个集合间的 差异越大。

3 基于 Hausdorff Distance 算法的故 障区段定位

3.1 定位原理

鉴于配电网小电流接地系统在发生单相接地 故障时,产生的不对称分量会影响暂态电气量,使 得基于暂态信号的保护灵敏度下降或者失去选择 性。因此,为了消除不对称分量对保护方法的影 响,本文首先对各监测点检测到的暂态零序电流数 据进行处理,通过故障前后一个周期 T 数据分量的 差得到所需的零序电流纯故障分量^[26],则第 *x* 个监 测点上第 *n* 个采样点对应的暂态零序电流分量为

 $I_x^0(n) = i_x^0(n+T) - i_x^0(n), n \ge 1$ (13) 式中 n 为采样点。

结合小波包时频分析特性对暂态零序电流分量进行处理,经过db10小波包5层分解后提取到一 维近似序列分量:

 $P_x(m) = [p(I_x^0, i, m)], i = 1, 2, ..., 5$ (14) 式中 P_x 为第 x 个监测点处的近似序列; $p(I_x^0, i, m)$ 为将零序电流分量 I_x^0 经小波包 i 层分解后得 到第 m 个节点的分解系数。

由于故障点上、下游电流分量在幅值、频率与 方向上存在较大差异,因此,故障点上下游小波近 似分量也必然存在一定差异性。故借助 Hausdorff Distance 衡量两者差异度,计算得到各监测点之间 的零序电流小波近似序列偏差矩阵为

H =

0	•••	$\bar{h}(P_1,P_x)$	•••	$\overline{h}(P_1,P_N)$
	0	•••	•••	•••
$\overline{h}(P_x, P_1)$		0	•••	$\bar{h}(P_x,P_N)$
	•••		0	
$\left[\bar{h}\left(P_{N},P_{1}\right)\right]$	•••	$\overline{h}\left(P_{N},P_{x}\right)$	•••	0
				(15)

式中 N 为监测点总个数。

为了更直观地反映各检测点之间的偏差情况,定

义一种综合偏差度,则第 x 个监测点的综合偏差度为

$$\hat{H}_{x} = 2\sum_{l=1}^{N} \boldsymbol{H}(x, l)$$
(16)

以各监测点之间的综合偏差度差值的绝对值作 为各区段的偏差度特征值,则 xy 区段间的偏差度 特征值为

$$\hat{H}_{xy} = \left| \hat{H}_{y} - \hat{H}_{x} \right| \tag{17}$$

结合本文暂态零序网络分析结果可知,故障区 段在偏差度上与其他健全区段存在较大区别,若存 在某区段偏差度特征值大于其余区段偏差度特征值 之和,即 $\hat{H}_{xy} > \sum (\hat{H} - \hat{H}_{xy})$,则该区段为故障区 段;反之,则为非故障区段。

3.2 故障区段定位方法

根据文中前述的分析,基于 Hausdorff Distance 算法的配电网故障区段定位方法流程如图 5 所示。

图5 故障区段定位方法流程

4 仿真实验

4.1 仿真模型

为了验证本文所提方法,在 ATP-EMTP 仿真 软件中搭建 10 kV 配电网谐振接地系统模型,该模 型包含5条缆线混合线路,如图6所示。

Figure 6 Simulation model

图 6 中架空线路与电缆参数设置如表 1、2 所示,变压器额定变比采用 110 kV/10.5 kV,消弧线 圈采用 8%过度补偿原理计算得到电感值为 8.83 H,每条馈线上按照一定距离设置若干监测点,本文 以第 4、5 条线路为例,设立 5 个监测点 A、B、C、D、 E,各监测点离母线处的距离如表 3 所示。

表1 各线路正/负序参量

Table 1 The positive and negative sequence

parameters of each line

线路	$R/(\Omega/\mathrm{km})$	L/(mH/km)	C/(nF/km)
架空	0.45	0.538 5	34 979
电缆	0.70	1.227 3	83 766

表2 各线路零序序参量

 Table 2
 The zero sequence parameters of each line

线路	$R/(\Omega/\mathrm{km})$	L/(mH/km)	C/(nF/km)
架空	0.27	0.08	7 981.74
电缆	2.70	0.32	11 373.98

表3 各监测点距离母线处距离

Table 3 The distance between each

monitoring point and bus

km

加速分子		各监注	则点距母约	 〕 〕 〕 〕 〕 〕 〕 〕 〕 	
顷线	A	В	С	D	Е
L_4	0	2	6	10	12
L_5	0	2	4	6	9

4.2 算例分析

1)馈线 L₄发生故障。

以纯架空线路 L₄发生单相接地故障为例,假设 故障点发生在 A_4B_4 段,故障初始角为 45°,当故障 电阻为 500 Ω 、采样频率为 100 Hz 时,按照本文方 法进行仿真,可得到此时的偏差矩阵为

2022	年	9	月
------	---	---	---

	Γ	0	31.941 8	33.766 7	33.040 1	32.428 9
	31	1.941 8	0	1.824 9	1.098 3	1.600 1
$H_4 =$	33	3.766 7	1.824 9	0	0.726 6	1.337 8
	33	3.040 1	1.098 3	0.726 6	0	1.345 8
	32	2.428 9	1.600 1	1.337 8	1.345 8	0
		0	2.730 2	4.362 9	5.780 9	8.908 97
		2.730 2	0	1.632 7	3.050 7	6.178 7
$oldsymbol{H}_5$:	_	4.362 9	1.632 7	0	1.608 6	4.546 0
		5.780 9	3.050 7	1.608 6	0	3.128 0
		8.908 9	6.178 7	4.546 0	3.128 0	0

由此可以得出,馈线 L₄各监测点 A_4 、 B_4 、 C_4 、 D₄、E₄的综合偏差度依次为[262.355 2,72.930 4, 75.312 1,72.421 8,73.425 4],各监测区段 A₄B₄、 B_4C_4 、 C_4D_4 、 D_4E_4 偏差度特征值分别为[189.424 8, 2.381 7,2.890 3,1.003 6],其中,A,B,偏差度特征 值大于其余区段偏差度特征值之和,因此,判定故障 发生在馈线 L₄的 A₄B₄区段,即本文定位方法正确; 同理,馈线 L₅各监测点 A₅、 B_5 、 C_5 、 D_5 、 E_5 的偏差度 依次为「43.565 7,27.184 5,24.300 4,27.136 5, 45.523 1,各监测区段 A₅B₅、B₅C₅、C₅D₅、D₅E₅偏 差度特征值分别为「16.381 2,2.884 1,2.836 0, 18.386 77,各区段均不满足偏差度特征值大于其余 区段偏差度特征值之和的条件,因此判定馈线 L₅为 健全线路。同样的方法,得到不同故障时刻、故障电 阻的条件下故障线路 L₄的定位情况如表 4 所示。 对表4中故障区段数据进行加粗。

表4 不同工况下的故障区段判别结果

故障初	电阻/		\hat{H}_{xy}					
始角/(°)	Ω	A_4B_4	B_4C_4	C_4D_4	$D_4 E_4$	区段		
0	5	126.866 0	2.358 3	2.138 3	3.766 5	A_4B_4		
45	500	189.424 8	2.381 7	2.890 3	1.003 6	A_4B_4		
90	1 000	3.334 9	89.908 8	4.580 5	18.570 6	B_4C_4		
0	5 000	1.837 5	27.201 1	1.842 4	2.851 5	B_4C_4		
45	5	3.460 9	1.832 3	113.541 9	25.804 8	C_4D_4		
90	500	2.084 4	10.331 0	74.269 0	26.495 5	C_4D_4		
0	1 000	1.103 8	1.353 8	5.263 7	79.557 7	$D_4 E_4$		
45	5 000	1.938 6	1.075 0	6.530 3	144.644 4	$D_4 E_4$		

2) 馈线 L₅发生故障。

以缆线混合线路 L₅发生单相接地故障为例,假 设故障点发生在 B_5C_5 段,故障时刻分别为 45° ,故 障电阻为 5 Ω 时,按照本文方法进行仿真,可得到此时的偏差矩阵为

1

由此可以得出,馈线 L_4 各监测点 A_4 、 B_4 、 C_4 、 D_4 、 E_4 的综合偏差度依次为[115.397 6,85.652 6, 75.719 0,93.989 6,106.457 5],各监测区段 A₄B₄、 B_4C_4 、 C_4D_4 、 D_4E_4 偏差度特征值分别为[29.745 0, 9.933 6,18.270 6,12.467 9],各区段均不满足偏差 度特征值大于其余区段偏差度特征值之和的条件, 因此判定馈线 L₄为健全线路;同理,馈线 L₅各监测 点 A₅、B₅、C₅、D₅、E₅ 的 偏 差 度 特 征 值 依 次 为 [632.989 3, 629. 145 7, 426. 162 6, 428. 347 2, 487.942 1],各监测区段 A_5B_5 、 B_5C_5 、 C_5D_5 、 D_5E_5 偏差度特征值分别为[3.843 6,202.983 1,2.184 6, 59.594 97,其中,B₅C₅偏差度特征值大于其余区段 偏差度特征值之和,因此判定故障发生在馈线 L₅的 B₅C₅区段,即本文定位方法正确。同样的方法,得 到不同故障时刻、故障电阻的条件下定位情况如 表5所示。对表5中故障的数据进行加粗。

表5 不同工况下的故障区段判别结果

 Table 5
 The fault section discrimination results under different operating conditionss

故障初	电阻/	\dot{H}_{xy}				
始角/(°)	Ω	A_5B_5	B_5C_5	C_5D_5	$D_5 E_5$	区段
0	5	110.521 9	4.021 8	0.971 0	6.535 7	A_5B_5
45	500	202.841 7	14.701 3	6.660 8	0.774 3	A_5B_5
90	1 000	3.121 7	90.022 2	2.646 5	17.688 9	B_5C_5
0	5 000	5.871 0	29.848 7	0.896 3	4.299 2	B_5C_5
45	5	10.162 9	4.815 0	155.453 7	43.751 3	C_5D_5
90	500	10.086 2	0.441 5	79.548 4	35.074 0	C_5D_5
0	1 000	3.532 2	2.031 4	2.585 7	73.516 1	$D_5 E_5$
45	5 000	13.385 1	1.373 1	2.612 4	178.019 2	$D_5 E_5$

由表 4、5 的仿真结果可知,无论是在纯架空线 路或者缆线混合线路中,本文所提方法在不同接地 故障条件下均能准确定位出故障区段,且故障区段 与非故障区段偏差度特征值数值相差较大,判别裕 度大,定位准确性较高。

4.3 算法对比分析

为了突出所提出方法在故障区段定位中的优势,本文将所提出的定位方法与基于小波包分解、基于 S 变换等区段定位方法在不同故障类型下的算法性能进行对比。

以图 6 中第 4、5 条线路为例,分别对设立的 5 个监测点 A、B、C、D、E 进行不同条件下的 50 次仿 真测试。考虑电流互感器以及电压互感器在实际运 行中会受到外界因素的干扰,为了考察 3 种方法在 噪声环境下的性能指标,对 50 次仿真测试数据分别 加入信噪比为 40、20 dB 的高斯白噪声,最终得到 3 种算法的仿真结果,如表 6 所示。

表6 不同区段定位方法的性能对比

 Table 6
 The performance comparison of different section positioning methods

空位主法	测试样	不同噪比(判别		
定位力法	本/个	无噪声	40	20	时间/s
小波包分解	50	96	90	76	0.244 3
S变换	50	98	94	84	0.268 7
本文	50	100	98	92	0.138 7

由表 6 可知,在 50 次仿真测试中,本文所提出 的区段定位方法正确率相比于基于小波包分解、基 于 S 变换等区段定位方法略高。当分别加入 40、20 dB 高斯白噪声干扰后,本文所提出的区段定位方法 正确率具有显著的判别优势,同时判别时间较短,具 有较好的抗干扰能力和适用性。

5 结语

由于配电网小电流接地系统的中性点多采用经 消弧线圈接地方式,导致发生单相接地故障时故障 区段定位困难,无法满足配电网安全稳定运行要求, 因此,本文提出了一种基于 Hausdorff Distance 算 法的配电网故障区段定位方法。通过对配电网单相 接地故障暂态零序电流分布图进行分析,提取故障 点上、下游暂态零序电流分量的小波包近似序列进 行分析可以有效地区分故障点上下游分界区域,从 而判别出故障发生的区段,并结合仿真验证了该方 法的正确性和优越性,可更好地满足安全稳定运行 要求。

参考文献:

[1] 丁佳立, 王昕, 郑益慧, 等. 利用线路中点电流检测的改进单端行波故障测距方法[J]. 高电压技术, 2020, 46
 (5):1814-1822.

DING Jiali, WANG Xin, ZHENG Yihui, et al. Improved method for fault location of single-ended traveling-wave using line midpoint current measurement[J]. High Voltage Engineering, 2020, 46(5): 1814-1822.

[2] 陈婷.智能算法在含分布式电源配电网故障定位中的应 用综述[J].电气技术,2020,21(9):1-6.

CHEN Ting. Review of application of intelligent algorithm in fault location of distribution network with distributed power supply[J]. Electrical Engineering, 2020, 21(9):1-6.

[3] 李泽文,刘基典,席燕辉,等.基于暂态波形相关性的配
 电网故障定位方法[J].电力系统自动化,2020,44(21):
 72-79.

LI Zewen, LIU Jidian, XI Yanhui, et al. Fault location method for distribution network based on transient waveform correlation[J]. Automation of Electric Power Systems, 2020, 44(21):72-79.

[4] 许冲冲,罗勋华,张维,等.基于频谱序列峭度分析的小 电流接地故障区段定位研究[J].电力系统保护与控制, 2018,46(20):52-58.

XU Chongchong, LUO Xunhua, ZHANG Wei, et al. Study on the small-current grounding fault location based on the kurtosis analysis of spectrum sequence[J]. Power System Protection and Control, 2018, 46(20):52-58.

[5] 谢李为,李勇,罗隆福,等.基于距离矩阵与分支系数的
 配电网故障定位方法[J].中国电机工程学报,2020,40
 (7):2180-2191+2397.

XIE Liwei, LI Yong, LUO Longfu, et al. Fault location method for distribution networks based on distance matrix and branch coefficient[J].Proceedings of the CSEE, 2020,40(7):2180-2191+2397.

[6] 毛董,孙玉华,李德明,等.基于行波法和信号注入法的 配电线路单相接地故障精确定位[J].通信电源技术, 2015,32(1):76-78.

MAO Dong, SUN Yuhua, LI Deming, et al. Accurate location of single phase grounding fault in distribution lines based on travelling wave method and signal injection method[J]. Telecom Power Technologies, 2015, 32 (1):76-78.

[7] 刘文杰,舒勤,韩晓言.基于广义S变换和TEO的配电 网故障定位方法[J].电力系统及其自动化学报,2019, 31(1):12-18.

LIU Wenjie, SHU Qin, HAN Xiaoyan. Fault location method for distribution network based on generalized stransform and teager energy operator[J]. Proceedings of the CSU-EPSA,2019,31(1):12-18.

[8] 张姝,杨健维,何正友,等.基于线路暂态重心频率的配 电网故障区段定位[J].中国电机工程学报,2015,35 (10):2463-2470.

ZHANG Shu, YANG Jianwei, HE Zhengyou, et al. Fault section location of the distribution network based on transient center frequency[J].Proceedings of the CSEE, 2015,35(10):2463-2470.

[9] 薛永端,张海台,李成刚,等.小电流接地故障暂态选线 与定位技术[J].供用电,2015,32(4):32-37+45.

XUE Yongduan, ZHANG Haitai, LI Chenggang, et al. The Technology of faulty feeder selection and faulty section location based on transient signals for singlephase earth fault in non-solidly earthed network[J].Distribution & Utilization, 2015, (4):32-37.

[10] 张理,葛成,俞斌,等.基于 DTU 与 FPI 的小电流接地 故障定位及信息建模[J].电测与仪表,2019,56(5): 130-136.

ZHANG Li, GE Cheng, YU Bin, et al. Small-current grounding fault line location and information modeling based on the interaction between DTU and FPI[J].Electrical Measurement & Instrumentation, 2019, 56 (5):130-136.

[11] WANG Z, RAZZAGHI R, PAOLONE M, et al. Time reversal applied to fault location in power networks:pilot test results and analyses[J].International Journal of Electrical Power and Energy Systems, 2020, 114:142615.

[12] 谢学磊.配电网故障自动定位技术研究[J].自动化与仪 表,2021,36(4):10-14.

XIE Xuelei.Research on automatic fault location technology of distribution network[J].Automation & Instrumentation,2021,36(4):10-14.

- [13] XIONG Y F, WANG S S, ZHANG W Q.A line-selection method of datafusion based on neural network[J]. Procedia Engineering, 2012, 29:520-525.
- [14] 曹文斌,徐静,王力,等.时域反演算法在配电网故障定位的建模和仿真[J].智慧电力,2020,48(12):79-83.
 CAO Wenbin,XU Jing,WANG Li, et al.Modeling and simulation of fault location with time reversal algorithm in distribution network[J].Smart Power,2020, 48(12):79-83.
- [15] YUAN H, LU C, MA J, et al. Neural network-based fault detectionmethod for aileron actuator[J]. Applied Mathematical Modelling, 2015, 39(19):5803-5815.
- [16] 陈奎,韦晓广,陈景波,等.基于样本数据处理和 ADA-BOOST 的小电流接地故障选线[J].中国电机工程学报,2014,34(34):6228-6237.

CHEN Kui, WEI Xiaoguang, CHEN Jingbo, et al. Fault line detection using sampled data processing and ADA-BOOST for small current grounding system [J]. Proceedings of the CSEE, 2014, 34(34):6228-6237.

- [17] GURURAJAPATHY S S, MOKHLIS H, ILLIAS H
 A.Fault location and detection techniques inpower distribution systems with distributed generation: a review
 [J].Renewable andSustainable Energy Reviews, 2017, 74:949-958.
- [18] 胡福年,张认,卞小亮.基于图论的主动配电网故障定 位方法[J].控制工程,2021,28(5):833-838.
 HU Funian,ZHANG Ren,BIAN Xiaoliang.Fault location method of active distribution network based on graph theory[J]. Control Engineering, 2021, 28(5): 833-838.
- [19] WANG X X, MA L Y, WANG T. An optimized nearest prototype classifier forpower plant fault diagnosis using hybridparticle swarm optimization algorithm[J]. International Journal of Electrical Power & Energy Systems, 2014, 58: 257-265.

[20] 贾清泉,石磊磊,王宁,等.基于证据理论和信息熵的消

弧线圈接地电网融合选线方法[J].电工技术学报,2012,27(6):191-197.

JIA Qingquan, SHI Leilei, WANG Ning, et al. A fusion method for ground fault line detection in compensated power networks based on evidence theory and information entropy[J]. Transactions of China Electrotechnical Society, 2012, 27(6):191-197.

- [21] FERREIRA V H,ZANGHI R,FORTES M Z, et al.A survey on intelligent system application to fault diagnosis inelectric power system transmission lines[J].Electric Power Systems Research,2016,136:135-153.
- [22] 于力,焦在滨,王晓鹏,等.基于 PMU 的中压配电网精 确故障定位方法及关键技术[J].电力系统自动化, 2020,44(18):30-38

YU Li, JIAO Zaibin, WANG Xiaopeng, et al. Accurate fault location scheme and key technology of mediumvoltage distribution network with synchrophasor measurement units[J]. Automation of Electric Power Systems, 2020, 44(18); 30-38

[23] HUANG J H, GE S Y, HAN J, et al. A diagnostic method for distribution networks based on power supply safety standards [J]. Protection and Control of Modern Power Systems, 2016, 1(1): 1-8.

[24] 邱彬,罗添元,宁博,等.基于 BAS-IGA 的含分布式电源配电网故障定位[J].电力系统及其自动化学报, 2021,33(2):8-14.

QIU Bin, LUO Tianyuan, NING Bo, et al. Fault location of distribution network with distribution generations based on BAS-IGA[J].Proceedings of the CSU-EPSA, 2021,33(2):8-14.

[25] 吴乐鹏,黄纯,林达斌,等.基于暂态小波能量的小电流 接地故障选线新方法[J].电力自动化设备,2013,33 (5):70-75.

WU Lepeng, HUANG Chun, LIN Dabin, et al. Faulty line selection based on transient wavelet energy for non-solid-earthed network[J].Electric Power Automation Equipment, 2013, 33(5):70-75.

[26] 廖彬宇,舒勤.基于正极性行波信号分析的配电网双端 故障定位[J].水电能源科学,2018,36(1):175-178+ 64.

LIAO Binyu, SHU Qin, et al. Two-terminal fault location of distribution network based on analysis of positive polarity traveling wave signal[J]. Water Resources and Power, 2018, 36(1):175-178+64.