基于高斯过程回归与不确定性耦合关系的电力系统规划典型场景提取技术
CSTR:
作者:
作者单位:

1.国网山东省电力公司威海供电公司;2.国网山东省电力公司经济技术研究院

中图分类号:

TM726

基金项目:

含风光等多类型电源接入的复杂电力系统协同规划关键技术研究-课题2:多源复杂电力系统典型场景大数据分析技术 项目编号:52061318006P


Extraction of Typical Scenarios for Power System Planning Based on Gaussian Process Regression and Uncertainty Coupling Relationship
Author:
Affiliation:

1.State Grid Shandong Power Supply Company,Weihai;2.State Grid Shandong Power Supply Company,Economic Research Institute,Jinan

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决典型场景生成方法未能全面考虑风、光、负荷等不确定因素间的耦合关系、传统聚类方法在高维数据集上表现较差、提取的典型场景不能很好体现原数据特征等问题。在改进核函数的基础上,结合贝叶斯公式和多元高斯分布,利用高斯过程回归(GPR)对电力系统中的多种不确定因素的耦合关系进行建模,生成模拟运行数据;采用时序分段典型场景提取方法,划分总调度区间为若干子区间并分别进行中心点聚类,得出子区间带权典型场景并用笛卡尔积连接,生成全调度区间典型场景集;应用Earth Mover’s Distance (EMD)方法,进行典型场景提取效果评价;算例验证了提取的典型场景能更好保留原始基础场景集合的概率分布特性,充分体现原始数据集合中不确定因素之间的耦合关系;验证了所述方法提取的典型场景能更好体现原数据特征。

    Abstract:

    Existing typical scenarios extraction methods fail to fully consider the coupling relationship between uncertain factors, and traditional clustering methods perform poorly on high-dimensional data sets, and the extracted typical scenes cannot well reflect the characteristics of the original data. In view of this situation, on the basis of improving the kernel function, combine Bayesian formula and multivariate Gaussian distribution, use Gaussian Process Regression (GPR) to model the coupling relationship of multiple uncertain factors in the power system, and generate simulating data ;Use the time sequence segmentation typical scenarios extraction method, divide the total scheduling interval into several sub-intervals and perform central point clustering respectively, obtain the weighted typical scenarios of the sub-intervals and connect them with the Cartesian product to generate the typical scenario set of the entire scheduling interval; Evaluate the extraction effect of typical scenarios on the basis of Earth Mover's Distance (EMD) method; The example verifies that the extracted typical scenarios can better retain the probability distribution characteristics of the original basic scenario set, and fully reflect the coupling between different uncertain factors in the original data set and proves that the typical scenarios extracted by the method can better reflect the characteristics of the original data.

    参考文献
    [1] 曹军威,袁仲达,明阳阳,张华赢.能源互联网大数据分析技术综述[J].南方电网技术,2015,9(11):1-12.
    [2] Cao Junwei, Yuan Zhongda, Ming Yangyang, Zhang Huaying. Survey of Big Data Analysis Technology for Energy Internet[J].Southern Power System Technology,2015,9(11):1-12.
    [3] 鲁宗相,李海波,乔颖.含高比例c电力系统灵活性规划及挑战[J].电力系统自动化,2016,40(13):147-158.
    [4] Lu Zongxiang, Li Haibo, Qiao Ying. Power System Flexibility Planning and Challenges Considering High Proportion of Renewable Energy[J].Automation of Electric Power Systems,2016,40(13):147-158.
    [5] 王蓓蓓,刘小聪,李扬.面向大容量风电接入考虑用户侧互动的系统日前调度和运行模拟研究[J].中国电机工程学报,2013,33(22):35-44.
    [6] Wang Beibei, Liu Xiaocong, Li Yang. Day-ahead Generation Scheduling and Operation Simulation Considering Demand Response in Large-capacity Wind Power Integrated Systems[J].Proceedings of the CSEE,2013,33(22):35-44.
    [7] 李珂,邰能灵,张沈习,陈曦.考虑相关性的分布式电源多目标规划方法[J].电力系统自动化,2017,41(09):51-57+199.
    [8] Li ke, Tai Nengling, Zhang Shenxi, Chen Xi. Multi- objective Planning Method of Distributed Generators Considering Correlations[J].Automation of Electric Power Systems,2017,41(09):51-57+199.
    [9] 王洪涛,李晓刚,邹斌.基于贝叶斯网络刻画风–光–荷相关性的配电网概率潮流计算[J].中国电机工程学报,2019,39(16):4753-4763+4977.
    [10] Wang Hongtao, Li Xiaogang, Zou Bin. Probabilistic Load Flow Calculation of Distribution System Based on Bayesian Network to Depict Wind-photovoltaic-load Correlation[J].Proceedings of the CSEE,2019,39(16):4753-4763+4977.
    [11] 邹斌,李冬.基于有效容量分布的含风电场电力系统随机生产模拟[J].中国电机工程学报,2012,32(7):23-31.
    [12] Zou Bin, Li Dong. Power system probabilistic production simulation with wind generation based on available capacity distribution[J].Proceedings of the CSEE,2012,32(7):23-31.
    [13] Zhang Jianyong,Wang Cong.Application of ARMA model in ultra-short term prediction of wind power[C].2013 International Conference on Computer Sciences and Applications (CSA).Wuhan,China:Hubei University of Technology.2013:361-364.
    [14] 刘洁颖,刘俊勇,黄媛,等.基于面板数据有序聚类的主动配电网规划场景降维技术[J].电网技术,2017,41(04):1132-1138.
    [15] Liu Jieying, Liu Junyong, Huang Yuan, et al. Scene Dimensionality Reduction Technology in Active Power Distribution Network Planning Based on Orderly Clustering of Panel Data[J].Power System Technology,2017,41(04):1132-1138.
    [16] 于晗,钟志勇,黄杰波,等. 采用拉丁超立方采样的电力系统概率潮流计算方法[J].电力系统自动化,2009,33(21):32-36.
    [17] Yu Han, Zhong Zhiyong, Huang Jiebo, et al. A Probabilistic Load Flow Calculation Method with Latin Hypercube Sampling[J].Automation of Electric Power Systems,2009,33(21):32-36.
    [18] 董雷,孟天骄,陈乃仕,等.采用马尔可夫链—多场景技术的交直流主动配电网优化调度[J].电力系统自动化,2018,42(05):147-153.
    [19] Dong Lei, Meng Tianjiao, Chen Shinai, et al. Optimized Scheduling of AC/DC Hybrid Active Distribution Network Using Markov Chains and Multiple Scenarios Technique[J].Automation of Electric Power Systems,2018,42(05):147-153.
    [20] 朱文俊,王毅,罗敏,等.面向海量用户用电特性感知的分布式聚类算法[J].电力系统自动化,2016,40(12):21-27.
    [21] Zhu Wenjun, Wang Yi, Luo Min, et al. Distributed Clustering Algorithm for Awareness of Electricity Consumption Characteristics of Massive Consumers[J].Automation of Electric Power Systems,2016,40(12):21-27.
    [22] 宋易阳,李存斌,祁之强.基于云模型和模糊聚类的电力负荷模式提取方法[J].电网技术,2014,38(12):3378-3383.
    [23] Song Yiyang, Li Cunbin, Yi Zhiqiang. Extraction of Power Load Patterns Based on Cloud Model and Fuzzy Clustering[J].Power System Technology,2014,38(12):3378-3383.
    [24] 张斌,庄池杰,胡军,等.结合降维技术的电力负荷曲线集成聚类算法[J].中国电机工程学报,2015,35(15):3741-3749.
    [25] Zhang Bin, Zhuang Chijie, Hu Jun, et al. Ensemble Clustering Algorithm Combined With Dimension Reduction Techniques for Power Load Profiles[J].Proceedings of the CSEE,2015,35(15):3741-3749.
    [26] 宋军英,何聪,李欣然,等.基于特征指标降维及熵权法的日负荷曲线聚类方法[J].电力系统自动化,2019,43(20):65-76.
    [27] Song Junying, He Cong, Li Xinran, et al. Daily Load Curve Clustering Method Based on Feature Index Dimension Reduction and Entropy Weight Method[J].Automation of Electric Power Systems,2019,43(20):65-76.
    [28] 李婧,徐胜蓝,万灿,卢奕城,王素英.基于自适应k-means++算法的电力负荷特性分析[J].南方电网技术,2019,13(02):13-19.
    [29] Li Jing, Xu Shenglan, Wan Can, Lu Yicheng, Wang Suying. Electricity Load Characteristics Analysis Based on Adaptive k-means ++ Algorithm[J].Southern Power System Technology,2019,13(02):13-19.
    [30] Bishop C M . Pattern Recognition and Machine Learning (Information Science and Statistics)[M]. Springer-Verlag New York, Inc. 2006.
    [31] 张建文,杨晨,冉懿,等.基于PCA-GPQR的电网负荷短期概率预测[J/OL].力系统及其自动化学报:1-7[2020-01-14].
    [32] Zhang Jianwen, Yang Chen, Ran Yi, et al. Short-Term Load Probability Forecasting Based on PCA-GPQR[J/OL].roceedings of the CSU-EPSA:1-7[2020-01-14].
    [33] 刘升伟,王星华,鲁迪,等. 基于改进高斯过程回归的短期负荷概率区间预测方法[J/OL].电力系统保护与控制: 1-8[2020-01-14].
    [34] Liu Shengwei, Wang Xinghua, Lu Di, et al. Electric Load Probabilistic Interval Prediction Method Based on Improved Gaussian Process Regression[J/OL].Power System Protection and Control: 1-8[2020-01-14].
    [35] 梁智,孙国强,卫志农,等.基于变量选择与高斯过程回归的短期负荷预测[J].电力建设, 2017,38(02):122-128.
    [36] Liang Zhi, Sun Guoqiang, Wei Zhinong et al. Short-Term Load Forecasting Based on Variable Selection and Gaussian Process Regression[J].Electric Power Construction, 2017,38(02):122-128.
    [37] Prince D S J D . Computer Vision: Models, Learning, and Inference[M]. Cambridge University Press, 2012.
    [38] 李航. 统计学习方法[M]. 清华大学出版社, 北京.
    [39] Park, Hae-Sang, and Chi-Hyuck Jun. A simple and fast algorithm for K-medoids clustering.[J] Expert systems with applications, 2009, 36(02): 3336-3341.
    [40] Rubner, Yossi, Carlo Tomasi, and Leonidas J. Guibas. The earth mover''s distance as a metric for image retrieval[J]. International journal of computer vision. 2000, 40(02): 99-121.
    [41] 曹军威,袁仲达,明阳阳,等(Cao Junwei, Yuan Zhongda, Ming Yangyang, et al).能源互联网大数据分析技术综述(Survey of Big Data Analysis Technology for Energy Internet)[J].南方电网技术(Southern Power System Technology),2015,9(11):1-12.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-10
  • 最后修改日期:2020-09-28
  • 录用日期:2020-12-07
文章二维码