变电站电磁环境智能移动监测装置设计与实测
CSTR:
作者:
作者单位:

1.国网山西省电力公司电力科学研究院;2.国网电力科学研究院武汉南瑞有限责任公司

中图分类号:

TM863

基金项目:

国家电网公司科技项目(No.520530200002)


Design and measurement of intelligent mobile monitoring device for electromagnetic environment in substation
Author:
Affiliation:

1.State Grid Shanxi Electric Power Research Institute;2.Wuhan NARI Limited Liability Company of State Grid Electric Power Research Institute

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提升变电站电磁环境信息采集的工作效率、提高数据测量精度,文中设计制作了一台变电站电磁环境智能移动监测装置。装置包括无人驾驶平台和搭载的电磁环境监测模块。自主设计工频电场探头可实现三个方向工频电场同步测量;带有复位电路的工频磁场采集电路,可消除磁阻传感器处于过强磁场干扰时的异常问题;外置温湿度模块,保证测量测量准确度。采用此装置在实际110kV变电站进行了电磁环境实测,可准确按规定路径自主行走并进行测量。建立了三维模型,进行空间电磁场分布的仿真模拟,实测数据与仿真数据对比表明两者有相同的变化趋势,平均误差小于5%,考虑仿真模型的简化,误差在可接受范围,验证了装置测量结果的准确性。

    Abstract:

    In order to improve the efficiency of substation electromagnetic environment information collection and the accuracy of data measurement, an intelligent mobile monitoring device is designed and manufactured. The device includes unmanned platform and electromagnetic environment monitoring module. Self-designed power frequency electric field probe can realize synchronous measurement of power frequency electric field in three directions. The power frequency magnetic field acquisition circuit with reset circuit can eliminate the abnormal problem when the magneto-resistive sensor is in the strong magnetic field interference. External temperature and humidity module ensure measurement accuracy. External temperature and humidity module are installed to ensure the accuracy of measurement and measurement. The electromagnetic environment is measured in the actual 110kV substation with this device, which can walk and measure independently according to the specified path accurately. A three-dimensional model is established to simulate the spatial electromagnetic field distribution. The comparison between the measured data and the simulation data shows that they have the same trend, and the average error is less than 5%. Considering the simplification of simulation model, the error is acceptable. The accuracy of the measurement results is verified.

    参考文献
    [1] 郭天伟,罗日成,潘茜雯, 等. 750kV同塔双回交流输电线路电磁环境分析[J]. 电力科学与技术学报, 2018, 33(1):46-53.
    [2] GUO Tianwei, LUO Richeng, PAN Qianwen, et al. Analysis on electromagnetic environment of 750kV double-circuits transmission lines [J]. Journal of Electric Power Science and Technology, 2018, 33(1):46-53.
    [3] 冯智慧,宋春艳,张广州, 等. 基于分布式多层体系的输变电工程电磁环境智能实时监测系统[J]. 中国电力, 2016, 49(1):109-113.
    [4] FENG ZHihui, Song Chunyan, ZHANG Guangzhou, et al. An intelligent real-time monitoring system for the power transmission electromagnetic environment based on a distributed multi-tier architecture [J]. Electrical Power, 2016, 49(1):109-113.
    [5] 李斌,刘磊,李敏, 等. ±500kV同塔双回直流输电线路电磁环境测试分析[J]. 高压电器, 2018, 54(2):153-157.
    [6] LI Bin, LIU Lei, LI Min, et al. Measurement and analysis of electromagnetic environment of ±500kV double-circuit DC transmission lines on the same tower [J]. High Voltage Apparatus, 2018, 54(2):153-157.
    [7] 潘茜雯, 罗日成, 唐祥盛, 等. 500kV同塔双回紧凑型输电线路电磁环境分析[J]. 高压电器, 2017, 53(11): 183-190.
    [8] PAN Qianwen, LUO Richeng, TANG Xiangsheng, et al. Analysis on electromagnetic environment of 500kV compact transmission line with double circuits on the same tower[J]. High Voltage Apparatus, 2017, 53(11): 183-190.
    [9] 杨滔, 邹岸新. 地形对1000kV交流输电线路地面工频电场的影响分析[J]. 高压电器, 2019, 55(12): 112-119.
    [10] YANG Tao, ZOU Anxin. Analysis on effect of topography on ground power frequency electric field of 1000kV AC transmission line [J]. High Voltage Apparatus, 2019, 55(12): 112-119.
    [11] 蔡焕青, 邵瑰玮, 胡霁, 等. 变电站巡检机器人应用现状和主要性能指标分析[J]. 电测与仪表, 2017, 54(14): 117-123.
    [12] CAI Huanqing, SHAO Guiwei, HU Ji, et al. Analysis of the main performance index and application status of inspection robot in substation[J]. Electrical Measurement Instrumentation, 2017, 54(14): 117-123.
    [13] 付殷,余占清,曾嵘. 输电线路电磁环境试验数据清理方法研究[J]. 高电压技术, 2018, 44(1): 289-295.
    [14] FU Yin, YU Zhanqing, ZENG Rong. Data Cleaning Method of Electromagnetic Environment of Power Transmission Line [J]. High Voltage Engineering, 2018, 44(1): 289-295.
    [15] 杨文刚,杨发. 110kV双回交流T接塔电场仿真分析[J]. 电力科学与技术学报, 2020, 35(5):138-143.
    [16] YANG Wengang, YANG Fa. Simulation analysis of electric field of 110kV double-circuit AC T-tower [J]. Journal of Electric Power Science and Technology, 2020, 35(5):138-143.
    [17] 王晓燕,赵建国,邬雄,等. 交流输电线路交叉跨越区域空间电场计算方法[J]. 高电压技术,2011,37(2):411-416.
    [18] WANG Xiaoyan, ZHAO Jianguo, WU Xiong, et al. Calculation method of electric field intensity for AC crossing transmission lines[J].High Voltage Engineering, 2011, 37(2): 411-416.
    [19] 王莹, 孙海涛, 薛彦登, 等. 750kV 变电站噪声测量与特性分析[J]. 西安工程大学学报, 2019, 33(5): 524-530.
    [20] WANG Ying, SUN Haitao, XUE Yandeng, et al. Measurement and characteristic analysis of noise in a 750kV substation[J]. Journal of Xi’an Polytechnic University, 2019, 33(5): 524-530.
    [21] DL/T988-2005 高压交流架空送电线路、变电站工频电场和磁场测量方法[S],2005.
    [22] DL/T988-2005 Methods of measurement of power frequency electric and magnetic field from high voltage overhead power transmission line and substation[S], 2005.
    [23] 彭继文,周建飞,周年光,侯云.湿度对500kV超高压交流架空送电线路区域电磁环境的影响研究[J].电网技术,2008,32(S2):236-239.
    [24] PENG Ji-wen,ZHOU Jian-fei,ZHOU Nian-guang,HOU Yun.Research on Effects of Humidity on 500 kV EHV AC Overhead Transmission Lines Regional Electromagnetic Environment [J]. Power System Technology, 2008,32(S2):236-239.
    [25] 孙涛,何旺龄,万保权,等.湿度对高压输电线路工频电场测量的影响[J].高电压技术,2014,40(6):1710-1716.
    [26] SUN Tao, HE Wangling, WAN Baoquan, et al. Influence of Humidity on Power Frequency Electric Field Measurements for High Voltage Transmission Lines [J]. High Voltage Engineering, 2014,40(6):1710-1716.
    [27] 刘守豹,吴迪,兰新生.工频电场测量仪支架材质对空间电场影响研究[J].四川电力技术,2018,41(02):34-37+75.
    [28] LIU Shoubao,WU Di,LAN Xinsheng.Study on Influence of Stent Material of Power Frequency Electric Field Tester on Space Electric Field[J]. Sichuan Electric Power Technology, 2018,41(02):34-37+75.
    [29] 杨国清,郭玥,王德意,王诗成,贾嵘,李平.不均匀电场下纳米氧化锌改性环氧树脂的绝缘特性[J].高电压技术,2017,43(09):2825-2830.
    [30] YANG Guoqing, GUO Yue, WANG Deyi, et al. Dielectric Characteristics of Epoxy Composites Modified with Nano ZnO in Non-uniform Electrical Field [J]. High Voltage Engineering, 2017,43(09):2825-2830.
    [31] 俞集辉,郑亚利,徐禄文,等. 湿度、温度对工频电场强度的影响[J]. 重庆大学学报,2009,32(2):137-140.
    [32] YU Jihui, ZHENG Yali, XU Luwen, et al. Effect of humidity and temperature on power electric-field intensity [J]. Journal of Chongqing University, 2009, 32(2): 137-140.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:60
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-11-17
  • 最后修改日期:2021-06-29
  • 录用日期:2021-09-11
文章二维码