考虑不确定性的综合能源系统日前经济调度
CSTR:
作者:
通讯作者:

陈晨(1986-),女,硕士,高级工程师,主要从事配网规划、综合能源的调度优化等研究;E-mail:jinglong92@163.com

中图分类号:

TM712

基金项目:

国家自然科学基金(51367004)


Study on day-ahead economic dispatch of integrated energy system considering uncertainty
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    考虑光伏出力和负荷的不确定性,研究一种适合工程推广的综合能源系统经济调度求解方法。首先,建立综合能源系统混合整数非线性概率模型;其次,采用特殊序列集合(SOS-2)方法对非线性模型进行分段线性化;然后,采用对称采样策略的无迹变换方法进行确定性转换,以揭示概率性背后隐藏的信息;最后,对比分析混合整数线性规划(MILP)求解方法与粒子群算法的计算结果。采用 PuLp开源建模框架对某示范性综合能源项目进行建模、 求解,结果表明:一方面,对称采样策略的无迹变换方法求解效率较高,其概率密度分布结果可为运行人员揭示概率性背后隐藏的运行状况信息;另一方面,与粒子群算法相比,PuLp开源框架的 MILP求解方法效率可提高数倍,适于工程推广。

    Abstract:

    For the purpose of popularization in application scenarios, this paper presents an economic dispatch method for the integrated energy systems considering the uncertainty of photovoltaic output and power load. Firstly, a mixed-integer nonlinear probability model for integrated energy systems is established. Secondly, the nonlinear model is segmented and linearized by the special sequence set (SOS-2) method. Then, the symmetric sampling strategy-based traceless transformation method is used to perform deterministic transformation, and to reveal the underlying probabilistic information. Finally, the calculation results of MILP and particle swarm optimization are compared and analyzed. The PuLp open-source modeling framework is utilized to model and solve the potential problems in a demonstration integrated energy project. The results show that, on one hand, the traceless transformation method which is based on the symmetric sampling strategy is efficient, and the generated probability density distribution can reveal the underlying probabilistic density distribution so that the operation information can be available for the system operator. On the other hand, compared with the particle swarm algorithm, the efficiency of solving MILP problems via the PuLp open-source framework can increase several times, which is suitable for real applications.

    参考文献
    [1] 国家发展改革委.分布式发电管理暂行办法[EB/OL].http://www.ndrc.gov.cn/zcfb/zcfbtz/201308/t20130813_553444.html,2013.
    [2] 国家发展改革委,国家能源局.关于推进多能互补集成优化示范工程建设的实施意见[EB/OL].http://www.nea.gov.cn/2016-07/07/c_135496039.html,2016.
    [3] Sahin C,Shahidehpour M,Erkmen I.Generation risk assessment in volatile conditions with wind,hydro,and natural gas units[J].Applied Energy,2012,96:4-11.
    [4] Kamalinia S,Wu L,Shahidehpour M.Stochastic midterm coordination of hydro and natural gas flexibilities for wind energy integration[J].IEEE Transations on Power Systems,2014,5(4):1070-1079.
    [5] 杨海柱,李梦龙,江昭阳,等.考虑需求侧电热气负荷响应的区域综合能源系统优化运行[J].电力系统保护与控制,2020,48(10):30-37.YANG Haizhu,LI Menglong,JIANG Zhaoyang,et al.Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response[J].Power System Protection and Control,2020,48(10):30-37.
    [6] 方绍凤,周任军,许福鹿,等.考虑电热多种负荷综合需求响应的园区微网综合能源系统优化运行[J].电力系统及其自动化学报,2020,32(1):50-57.FANG Shaofeng,ZHOU Renjun,XU Fulu,et al.Optimal operation of integrated energy system for park micro grid considering comprehensive response of electric and thermal loads[J].Proceedings of the CSU-EPSA,2020,32(1):50-57.
    [7] Zhang X,Shahidehpour M,Alabdulwahab A,et al.Optimal expansion planning of energy hub with multiple energy infrastructures[J].IEEE Transactions on Smart Grid,2015,6(5):2302-2311.
    [8] 权超,董晓峰,姜彤.基于CCHP耦合的电力、天然气区域综合能源系统优化规划[J].电网技术,2018,42(8):2456-2466.QUAN Chao,DONG Xiaofeng,JIANG Tong.Optimization planning of integrated electricity-gas community energy system based on coupled CCHP[J].Power System Technology,2018,42(8):2456-2466.
    [9] Geidl M,Andersson G.Optimal power flow of multiple energy carriers[J].IEEE Transations on Power Systems,2007,22(1):145-155.
    [10] 古哲源,苏小林,秦宏,等.考虑广义电储能的综合能源系统多目标规划[J].供用电,2020,37(7):73-80+87.GU Zheyuan,SU Xiaolin,QIN Hong,et al.Multi-objective planning of integrated energy system considering generalized energy storage[J].Distribution & Utilization,2020,37(7):73-80+87.
    [11] 曾红,刘天琪,何川,等.含电转气设备的气电互联综合能源系统多目标优化[J].电测与仪表,2019,56(8):99-107.ZENG Hong,LIU Tianqi,HE Chuan,et al.Multi-objective optimization for integrated natural-gas and electricity energy system considering power-to-gas[J].Electrical Measurement & Instrumentation,2019,56(8):99-107.
    [12] 白宏坤,尹硕,李虎军,等.计及碳交易成本的多能源站综合能源系统规划[J].电力科学与技术学报,2019,34(1):11-19.BAI Hongkun,YIN Shuo,LI Hujun,et al.Optimal planning of mutienergy stations considering Carbon-trading cost[J].Journal of Electric Power Science and Technology,2019,34(1):11-19.
    [13] 刘广,白晓清,刁天一.考虑气电网络架构的沼—风—光综合能源微网优化调度[J].电网与清洁能源,2020,36(12):49-58.LIU Guang,BAI Xiaoqing,DIAO Tianyi.Optimal scheduling of biogas-wind-solar integrated energy microgrid system considering gas-power network architecture[J].Power System and Clean Energy,2020,36(12):49-58.
    [14] 张涛,郭玥彤,李逸鸿,等.计及电气热综合需求响应的区域综合能源系统优化调度[J].电力系统保护与控制,2021,49(1):52-61.ZHANG Tao,GUO Yuetong,LI Yihong,et al.Optimization scheduling of regional integrated energy systems based on electric-thermal-gas integrated demand response[J].Power System Protection and Control,2021,49(1):52-61.
    [15] Tomlin J A.Special ordered sets and an application to gas supply operations planning[J].Mathematical Programming,1988,42(1-3),69-84.
    [16] 翟晶晶,吴晓蓓,傅质馨,等.考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J].中国电力,2020,53(8):9-18.ZHAI Jingjing,WU Xiaobei,FU Zhixin,et al.Robust optimization of integrated energy systems considering demand response and photovoltaic uncertainty[J].Electric Power,2020,53(8):9-18.
    [17] Julier S,Uhlman J.A new method for nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transations on Automation Control,2000,45(3):477-482.
    [18] 代景龙,白晓清,鲍海波.考虑源荷侧不确定性的概率最优潮流[J].现代电力,2016,33(1):34-40.DAI Jinglong,BAI Xiaoqing,BAO Haibo.Probabilistic optimal power flow considering source and demand side uncertainty[J].Modern Electric Power,2016,33(1):34-40.
    [19] 张福民,魏永磊,李占凯,等.基于改进交叉熵算法的概率最优潮流计算[J].智慧电力,2020,48(6):79-84.ZHANG Fumin,WEI Yonglei,LI Zhankai,et al.Probabilistic optimal power flow calculation based on improved cross-entropy algorithm[J].Smart Power,2020,48(6):7984.
    [20] 代景龙,韦化,鲍海波,等.基于无迹变换含分布式电源系统的随机潮流[J].电力自动化设备,2016,36(3):8693.DAI Jinglong,WEI Hua,BAO Haibo,et al.Stochastic power flow calculation based on unscented transform for power system with distributed generations[J].Electric Power Automation Equipment,2016,36(3):86-93.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈晨,李端超,王海伟,等.考虑不确定性的综合能源系统日前经济调度[J].电力科学与技术学报,2021,36(2):24-30.
Chen Chen, Li Duanchao, Wang Haiwei, et al. Study on day-ahead economic dispatch of integrated energy system considering uncertainty[J]. Journal of Electric Power Science and Technology,2021,36(2):24-30.

复制
分享
文章指标
  • 点击次数:412
  • 下载次数: 951
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-05-08
文章二维码