基于态势感知的风电高压直流输电系统频率协调控制策略
CSTR:
作者:
作者单位:

上海电力大学电气工程学院 上海 200000

中图分类号:

TM721

基金项目:

国家自然科学(51807114).


Frequency Coordinated Control Strategy for Wind Power HVDC Transmission SystemBased on Situation Awareness
Author:
Affiliation:

School of Electrical Engineering,Shanghai Electric Power University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提高风电高压直流输电系统的频率恢复速率和稳定性,本文基于态势感知理论,建立了频率协调控制(FCC)数学模型,提出了一种基于态势感知的风电接入输电系统频率控制方法。通过对功频特性态势现状和发展规律的总结,构建了非线性数学模型,预测了有限时域下的频率响应。根据预测结果动态调整了FCC的参数,并基于仿真模型与传统控制方法进行了仿真对比测试。试验结果表明,与传统控制方法相比,在基于态势感知的控制方法下,系统的最大频率偏差降低了约41.6%,频率回调时间降低了约11.6%,能够有效提高系统频率恢复速率,降低系统最大频率偏差概率,增强系统稳定性。

    Abstract:

    With the expansion of the scale of wind power generation, in order to improve the frequency recovery rate and stability of the wind power HVDC transmission system, this paper establishes a frequency coordinated control (FCC) mathematical model based on the situation awareness theory, and proposes a wind power based on situation awareness. Access to the frequency control method of the power transmission system. By summarizing the current status and development laws of power-frequency characteristics, a nonlinear mathematical model is constructed to predict the frequency response in the finite time domain. According to the prediction results, the FCC parameters were dynamically adjusted, and simulation comparison tests were carried out based on the simulation model and traditional control methods. The test results show that, compared with the traditional control method, under the situational awareness-based control method, the maximum frequency deviation of the system is reduced by about 41.6%, and the frequency callback time is reduced by about 11.6%, which can effectively increase the frequency recovery rate of the system and reduce the system. The maximum frequency deviation probability enhances system stability.

    参考文献
    [1] 周孝信,陈树勇,鲁宗相.能源转型中我国新一代电力系统的技 术特征[J].中国电机工程学报,2018,38(07):1893-1904.hou Xiaoxin, Chen Shuyong, Lu Zongxiang. Technical characteristics of my country''s new generation power system in the energy transition[J]. Proceedings of the Chinese Society for Electrical Engineering, 2018,38(07):1893-1904.
    [2] 朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34.hu Lingzhi, Chen Ning, Han Hualing. Analysis of key issues and countermeasures in wind power consumption[J]. Automation of Electric Power Systems,2011,35(22):29-34.
    [3] 赵嘉兴,高伟,上官明霞.风电参与电力系统调频综述[J].电力系统保护与控制,2017,45(21):157-169.hao Jiaxing, Gao Wei, Shangguan Mingxia. Summary of wind power participating in power system frequency regulation[J]. Power System Protection and Control,2017,45(21):157-169.
    [4] 余颖辉,郭强.大规模风电接入对电网调度运行的影响[J].华东电力,2014,42(07):1337-1340.u Yinghui, Guo Qiang. Impact of large-scale wind power integration on grid dispatching operation[J]. East China Electric Power,2014,42(07):1337-1340.
    [5] 姚良忠,朱凌志,周明,等.高比例可再生能源电力系统的协同优化运行技术展望[J].电力系统自动化,2017,41(9):36-43.ao Liangzhong, Zhu Lingzhi, Zhou Ming, et al. Prospects of collaborative optimization operation technology for high-proportion renewable energy power systems[J]. Automation of Electric Power Systems,2017,41(9):36-43.
    [6] 艾青,刘天琪,印月.含大规模风电的高压直流送端系统多源协同调频策略[J].电力自动化设备,2020,40(10):56-63.i Qing, Liu Tianqi, Yin Yue. Multi-source coordinated frequency modulation strategy for HVDC transmission-end system with large-scale wind power[J]. Electric Power Automation Equipment, 2020,40(10):56-63.
    [7] Chittaranjan Pradhan, Chandrashekhar Narayan Bhende, Anurag K. Srivastava. Frequency sensitivity analysis of dynamic demand response in wind farm integrated power system[J]. IET Renewable Power Generation,2019,6(13):905-919.
    [8] WU Ziping, GAO Wenzhong, GAO Tianqi. State-of-the-art review on frequency response of wind power plants in power systems[J]. Journal of Modern Power Systems and Clean Energy. 2018,6(01):1-16.
    [9] 李媛媛,余秀月,丁剑.含高渗透率风电的孤网频率动态特性研究[J].电力系统保护与控制,2016,44(23):158-163.i Yuanyuan, Yu Xiuyue, Ding Jian. Study on frequency dynamic characteristics of isolated grid with high permeability wind power[J]. Power System Protection and Control,2016,44(23):158-163.
    [10] 韩平平,张海天,丁明.大规模高压直流输电系统闭锁故障下送端风电场高电压穿越的控制策略[J].电网技术,2018, 42(04):1086-1095.an Pingping, Zhang Haitian, Ding Ming. Control strategy for high voltage ride-through of wind farms at the sending end under lock-up faults of large-scale HVDC systems[J]. Power System Technology,2018, 42(04):1086-1095.
    [11] WANG Ye, DELILLE G, BAYEM H, et al. High wind power penetration in isolated power systems assessment of wind inertial and primary frequency responses[J]. IEEE Tran态势感知ctions on Power Systems, 2013,28(3):2412-2420.
    [12] 赵磊,刘天琪,李兴源,等.基于变结构控制理论的高压直流附加频率控制器设计[J].电力自动化设备,2017,37(11):218-223.hao Lei, Liu Tianqi, Li Xingyuan, et al. Design of HVDC Additional Frequency Controller Based on Variable Structure Control Theory[J]. Power Automation Equipment,2017,37(11):218-223.
    [13] 潘伟,李勇,曹一家,等.用于大规模集中式风电并网的VSC-HVDC频率控制方法[J].电力自动化设备,2015,35(5):94-99.an Wei, Li Yong, Cao Jia, et al. VSC-HVDC frequency control method for large-scale centralized wind power grid connection[J]. Power Automation Equipment,2015,35(5):94-99.
    [14] Yang Jianwei, Sun Xiaofei, Liao Kai. Model predictive control-based load frequency control for power systems with wind-turbine generators [J]. IET Renewable Power Generation, 2019.5(19):2871-2879.
    [15] 付媛,王毅,张祥宇.基于VSC-HVDC的海上风电系统虚拟惯性控制技术[J].电测与仪表,2014,51(01):43-48.u Yuan, Wang Yi, Zhang Xiangyu. Virtual inertial control technology of offshore wind power system based on VSC-HVDC[J]. Electrical Measurement and Instrumentation,2014,51(01):43-48.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:143
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-03-03
  • 最后修改日期:2021-05-31
  • 录用日期:2021-06-18
文章二维码