大型风电腰荷接入的主网安全调度方法
CSTR:
作者:
作者单位:

(1.长沙理工大学电气与信息工程学院,湖南 长沙 410076;2.国网青海省电力公司西宁供电公司,青海 西宁 810000)

通讯作者:

竺 炜(1968—),男,博士,教授,主要从事电力系统稳定分析与控制方面的研究;E?mail:738660686@qq.com

中图分类号:

TM712

基金项目:

国家自然科学基金(52077009);湖南省教育厅重点项目(20A013);长沙理工大学研究生科研创新项目(CX2021SS51)


Secure scheduling method of main network for large‑scale wind power waist‑load access
Author:
Affiliation:

(1.School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410076, China;2.Xining Power Supply Company,State Grid Qinghai Electric Power Company,Xining 810000, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    风功率波动性大,日前预测准确性较差,导致大型风电消纳与电网安全鲁棒性的矛盾。提出一种风电“腰荷”出力接入的自动调频调度方法,以减少弃风量且提高风电功率大幅波动下的主网在线安全性。首先,为提高日前风功率神经网络预测的收敛性,提出时序矩阵奇异值分解的多样本数据预处理方法;其次,为得到与日前风功率预测相关的腰荷出力计划曲线,采用多项式回归拟合及基准功率偏差,得到相关性较大的光滑曲线;然后,为减小在线风功率骤减导致的频率偏差,设定调频机组自动调频的“启动”曲线族;最后,为保持自动调频后主网有功潮流分布合理并提高功角安全性,采用等效功角最小的优化模型,得到各调频机组出力增量的最优分配方案。算例验证该调度方法的可行性,对减少大型风电的弃风并提高电网安全运行水平具有理论和实际意义。

    Abstract:

    The large fluctuation of wind power and the poor accuracy of day-ahead prediction lead to the contradiction between large-scale wind power accommodation and grid security robustness. An automatic frequency modulation scheduling method for wind power "waist load" output access is proposed to reduce wind curtailment and improve the online security of the main network under large fluctuations of wind power. Firstly, to improve the convergence of neural network for day-ahead wind power prediction, a multi-sample data preprocessing method based on singular value decomposition of time series matrix is proposed. Secondly, in order to obtain the output plan curve of waist load related to the day-ahead wind power prediction, polynomial regression fitting and reference power deviation are used to obtain a smooth curve with high correlation. Then, to reduce the frequency deviation caused by the sudden decrease of online wind power, a family of "start-up" curves for automatic frequency modulation of frequency modulation units is set. Finally, in order to maintain a reasonable active power flow distribution in the main network after automatic frequency modulation and improve the power angle security, an optimization model with the smallest equivalent power angle is adopted to obtain the optimal allocation scheme of the output increment of each frequency modulation unit. The example verifies the feasibility of the scheduling method, which has theoretical and practical significance for reducing wind curtailment of large-scale wind power and improving the safe operation level of the power grid.

    参考文献
    [1] 黄煜,徐青山,夏元兴,等.考虑自适应传输备用的含风电电力系统双层随机调度方法[J].电力系统自动化,2021,45(20):29-37. HUANG Yu,XU Qingshan,XIA Yuanxing,et al.Bi-level stochastic scheduling method for power system with wind power considering adaptive transmission reserve[J].Automation of Electric Power Systems,2021,45(20):29-37.
    [2] 康丽虹,贾燕冰,谢栋,等.考虑混氢天然气的综合能源系统低碳经济调度[J].电网与清洁能源,2023,39(7):108-117. KANG Lihong,JIA Yanbing,XIE Dong,et al.Low-carbon economic dispatch of the integrated energy system considering hydrogen enriched compressed natural gas[J].Power System and Clean Energy,2023,39(7):108-117.
    [3] 肖白,张博,王辛玮,等.基于组合模态分解和深度学习的短期风电功率区间预测[J].电力系统自动化,2023,47(17):110-117. XIAO Bai,ZHANG Bo,WANG Xinwei,et al.Short-term wind power interval prediction based on combined mode decomposition and deep learning[J].Automation of Electric Power Systems,2023,47(17):110-117.
    [4] KHODAYAR M,KAYNAK O,KHODAYAR M E.Rough deep neural architecture for short-term wind speed forecasting[J].IEEE Transactions on Industrial Informatics,2017,13(6):2770-2779.
    [5] 刘媛媛,蔡泽祥,陈元榉,等.基于容器的配电网保护控制终端业务调度模型与策略分析[J].电力建设,2023,44(10):95-106. LIU Yuanyuan,CAI Zexiang,CHEN Yuanju,et al.Business scheduling model and strategy analysis of distribution network protection control terminal based on container[J].Electric Power Construction,2023,44(10):95-106.
    [6] 严中华,王建功,朱英刚,等.考虑碳排放流理论的风—碳捕集—电转气联合新型中长期调度方式[J].智慧电力,2022,50(6):14-21. YAN Zhonghua,WANG Jiangong,ZHU Yinggang,et al.New medium-long term dispatching mode of wind-carbon capture-P2G combined system considering carbon emission flow theory[J].Smart Power,2022,50(6):14-21.
    [7] 雷旭,马鹏飞,宋智帅,等.计及风电预测误差的柔性负荷日内调度模型[J].发电技术,2022,43(3):485-491. LEI Xu,MA Pengfei,SONG Zhishuai,et al.A flexible intraday load dispatch model considering wind power prediction errors[J].Power Generation Technology,2022,43(3):485-491.
    [8] YE L,ZHAO Y N,ZENG C,et al.Short-term wind power prediction based on spatial model[J].Renewable Energy,2017,101:1067-1074.
    [9] YIN H,OU Z H,FU J J,et al.A novel transfer learning approach for wind power prediction based on a serio-parallel deep learning architecture[J].Energy,2021,234:121271.
    [10] HU S,XIANG Y,HUO D,et al.An improved deep belief network based hybrid forecasting method for wind power[J].Energy,2021,224:120185.
    [11] 陈健云,胡瑞杰,徐强,等.地震作用下海上风电联接变压器动力模型试验[J].高压电器,2022,58(8):168-174. CHEN Jianyun,HU Ruijie,XU Qiang,et al.Dynamic model test of offshore wind power connection transformer under seismic load[J].High Voltage Apparatus,2022,58(8):168-174.
    [12] 杨春祥,张烜榕,姚巽,等.基于风电出力场景集的电力现货市场两阶段随机规划模型[J].供用电,2022,39(6):76-82+91. YANG Chunxiang,ZHANG Xuanrong,YAO Xun,et al.Two-stage stochastic programming model for electricity spot market based on wind power output scenario set[J].Distribution & Utilization,2022,39(6):76-82+91.
    [13] 兰健,郭庆来,周艳真,等.基于生成对抗网络和模型迁移的电力系统典型运行方式样本生成[J].中国电机工程学报,2022,42(8):2889-2900. LAN Jian,GUO Qinglai,ZHOU Yanzhen,et al.Generation of power system typical operation mode samples:a generation adversarial network and model-based transfer learning approach[J].Proceedings of the CSEE,2022,42(8):2889-2900.
    [14] 何大禄,廖建权,王强钢.基于三有源桥串并联直流潮流控制器的环形双极直流配电网不平衡潮流抑制[J].电工技术学报,2022,37(11):2837-2848. HE Dalu,LIAO Jianquan,WANG Qianggang.Triple active bridge power flow controller based unbalanced power flow suppression for ring bipolar DC distribution network[J].Transactions of China Electrotechnical Society,2022,37(11):2837-2848.
    [15] 巨云涛,张紫枫,刘文武,等.考虑限幅约束的多区域互联电网全分布式潮流算法[J].电力系统保护与控制,2022,50(7):58-68. JU Yuntao,ZHANG Zifeng,LIU Wenwu,et al.A fully distributed power flow algorithm for multi-region interconnected power grids considering limiting constraints[J].Power System Protection and Control,2022,50(7):58-68.
    [16] LAVR V,ZDENěK M.A comparative analysis of a power system stability with virtual inertia[J].Energies,2021,14(11):3277.
    [17] 陈昌明,彭克,陈羽,等.直驱风力发电系统接入直流配电系统的小扰动稳定分析[J].电测与仪表,2023,60(6):57-66. CHEN Changming,PENG Ke,CHEN Yu,et al.Small disturbance stability analysis of direct-drive wind power system integrated into DC distribution system[J].Electrical Measurement & Instrumentation,2023,60(6):57-66.
    [18] 赵心怡,谢俊,周翠玉,等.风—光—抽蓄零碳电力系统多时间尺度协调调度模型[J].电力工程技术,2023,42(3):121-129. ZHAO Xinyi,XIE Jun,ZHOU Cuiyu,et al.A multi-time scale coordinated dispatching model of wind-photovoltaic-pumped storage zero-carbon power system[J].Electric Power Engineering Technology,2023,42(3):121-129.
    [19] 竺炜,周孝信,唐如.电网的弹性力学网络拓扑映射[J].中国电机工程学报,2011,31(31):109-117. ZHU Wei,ZHOU Xiaoxin,TANG Ru.Elasticity network topology mapping for power grid[J].Proceedings of the CSEE,2011,31(31):109-117.
    [20] 竺炜,周孝信,蒋頔,等.基于映射弹性势能的电网有功承载能力定量指标[J].中国电机工程学报,2014,34(13):2088-2099. ZHU Wei,ZHOU Xiaoxin,JIANG Di,et al.Quantitative index of grid active power load capability based on mapping elasticity potential energy[J].Proceedings of the CSEE,2014,34(13):2088-2099.
    [21] 竺炜,刘校锋,田皓,等.主网在线安全态势及运行经验的获取方法[J].中国电机工程学报,2018,38(22):6605-6616. ZHU Wei,LIU Xiaofeng,TIAN Hao,et al.Method of main grid online security situation and operational experience acquisition[J].Proceedings of the CSEE,2018,38(22):6605-6616.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

竺 炜,杨子琦,祁俊辉,等.大型风电腰荷接入的主网安全调度方法[J].电力科学与技术学报,2024,39(2):1-8.
ZHU Wei, YANG Ziqi, QI Junhui, et al. Secure scheduling method of main network for large‑scale wind power waist‑load access[J]. Journal of Electric Power Science and Technology,2024,39(2):1-8.

复制
分享
文章指标
  • 点击次数:185
  • 下载次数: 674
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-05-29
文章二维码