夏季气象电力负荷相关性分析模型修正方法——以北京为例
CSTR:
作者:
作者单位:

(1.华北电力大学资源环境系统优化教育部重点实验室,北京 102206;2.北京市科学技术研究院城市系统工程研究所,北京 100035)

通讯作者:

沈春明(1985—),男,博士,研究员,主要从事电力系统韧性提升方面的研究;E?mail:Chunming_Shen@126.com

中图分类号:

TM715

基金项目:

北京市科技新星计划项目(Z191100001119069);国家重点研发计划(2018YFE0208400)


Correction method of correlation analysis model between meteorology and electric power load in summer: a case study of Beijing
Author:
Affiliation:

(1. Key Laboratory of Resource and Environment System Optimization, Ministry of Education, North China Electric Power University College,Beijing 102206, China; 2. Institute of Urban System Engineering, Beijing Academy of Science and Technology,Beijing 100035, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    气象电力负荷相关性分析对电力负荷预测影响关键,需根据实际数据对相关性经验模型修正。基于综合气象指数、积温效应以及电力负荷与气象因素相关性分析经验公式,提出一种夏季气象负荷相关性模型修正方法;采用负荷趋势分析和Python爬取提取气象负荷与气象数据,提高分析数据的精准性;通过对比分析负荷与单气象因子、综合气象指数以及两种积温效应修正的相关系数,结合负荷与气象指标随时间变化趋势吻合度,确定适用于相关性分析的最优指标参数,进而构建气象负荷与最优指标参数之间的拟合关系式,并以2019年北京夏季主城区为例应用验证。结果表明,与单气象因素相比,电力负荷、气象负荷和综合气象指数的相关性更强;各综合气象指数中,基于日平均气温的酷热指数与气象负荷的相关系数最高;2种积温修正方法中,考虑累积效应系数的方法对气温的修正效果更好,修正后气温与气象负荷的相关系数提高7.39%;基于修正气温的酷热指数与气象负荷的相关性较未修正时均有所提高,与负荷的变化趋势更接近;以酷热指数和修正后温度为自变量构建的气象负荷拟合关系式与实际值的吻合度高于参考的经验公式。

    Abstract:

    The correlation analysis between meteorological factors and power load is critical to power load forecasting, and it is necessary to correct the empirical model of correlation according to actual data. Based on the comprehensive meteorological index, accumulated temperature effect, and the empirical formula of correlation analysis between power load and meteorological factors, a method for correcting the correlation model of meteorological load in summer is proposed. Load trend analysis and Python crawling are used to extract meteorological load and meteorological data to improve the accuracy of analytical data. By comparing and analyzing the correlation coefficients between load and single meteorological factors, comprehensive meteorological indices, and two kinds of accumulated temperature effect corrections, combined with the coincidence degree of load and meteorological indicators over time, the optimal index parameters suitable for correlation analysis are determined. And then the fitting relationship between meteorological load and optimal index parameters is constructed. The proposed method is applied and verified by taking the main urban area of Beijing in summer 2019 as an example. The results show that compared with single meteorological factors, there is a stronger correlation between power load, meteorological load, and comprehensive meteorological index. Among the comprehensive meteorological indices, the heat index based on daily average temperature has the highest correlation coefficient with meteorological load. Among the two accumulated temperature correction methods, the method considering the cumulative effect coefficient has a better correction effect on temperature, and the correlation coefficient between the corrected temperature and meteorological load increases by 7.39%. The correlation between the heat index based on the corrected temperature and meteorological load is higher than that before correction, which is closer to the changing trend of load. The coincidence degree between the fitting relationship of meteorological load constructed with heat index and corrected temperature as independent variables and the actual value is higher than that of the referenced empirical formula.

    参考文献
    [1] 陈凤,高大兵,苏盛.气候变化对长江中下游地区采暖制冷负荷需求影响分析[J].电力科学与技术学报,2016,31(1):140-144. CHEN Feng,GAO Dabing,SU Sheng.Climate Change impact analysis on heating & cooling electricity demand in the middle and lower reaches of the Yangtze River[J].Journal of Electric Power Science and Technology,2016,31(1):140-144.
    [2] 陈宋宋,王阳,周颖,等.基于客户用电数据的多时空维度负荷预测综述[J].电网与清洁能源,2023,39(12):28-40. CHEN Songsong,WANG Yang,ZHOU Ying,et al.A review of multi-time-space load forecasting based on customer electricity consumption data[J].Power System and Clean Energy,2023,39(12):28-40.
    [4] 张夏韦,梁军,王要强,等.电动汽车充电负荷时空分布预测研究综述[J].电力建设,2023,44(12):161-173. ZHANG Xiawei,LIANG Jun,WANG Yaoqiang,et al.Overview of research on spatiotemporal distribution prediction of electric vehicle charging[J].Electric Power Construction,2023,44(12):161-173
    [5] 寿绍安,罗海荣,王晓康,等.基于VMD-ISODATA-DBN的配电台区短期负荷预测方法[J].智慧电力,2023,51(11):53-60. SHOU Shaoan,LUO Hairong,WANG Xiaokang,et al.Forecasting method of short-term load in distribution station area based on VMD-ISODATA-DBN[J].Smart Power,2023,51(11):53-60.
    [6] 马传杰,孙宇贞,彭道刚,等.基于XGBoost-MTL的综合能源系统多元负荷预测[J].电力工程技术,2023,42(5):158-166. MA Chuanjie,SUN Yuzhen,PENG Daogang,et al.Multivariate load forecasting for integrated energy system based on XGBoost-MTL[J].Electric Power Engineering Technology,2023,42(5):158-166.
    [7] 郭占伍,张泽亚,周兴华,等.考虑气象因素的电采暖负荷预测研究[J].电测与仪表,2022,59(2):154-158. GUO Zhanwu,ZHANG Zeya,ZHOU Xinghua,et al.Study on forecasting method of electric heating load considering meteorologicalfactors[J].Electrical Measurement & Instrumentation,2022,59(2):154-158.
    [8] 彭道刚,税纪钧,王丹豪,等.“双碳”背景下虚拟电厂研究综述[J].发电技术,2023,43(5):602-615. PENG Daogang,SHUI Jijun,WANG Danhao,et al.Review of virtual power plant under the background of“ Dual Carbon”[J].Power Generation Technology,2023,43(5):602-615.
    [9] 北京市城市管理委员会.北京市城市管理委员会关于印发《北京市“十四五”时期电力发展规划》的通知(京管发〔2022〕14号)[EB/OL].http://csglw.beijing.gov.cn/zwxx/zcwj/qtwj/202206/t20220629_2755305.html,2022-10-12. Beijing Municipal Municipal Administrative Commission.Notice of Beijing Municipal Commission of Urban Administration on the Printing and Distribution of "Beijing's 14th Five-Year Plan for Electric Power Development" (Beijing Guanfa (2022) No.14)[EB/OL].http://csglw.beijing.gov.cn/zwxx/zcwj/qtwj/202206/t20220629_2755305.html,2022-10-12.
    [10] 李艳,俞剑蔚,蔡芗宁,等.南京市电力负荷特征及夏季极端负荷与气象条件关系[J].气象科技,2021,49(4):637-646. LI Yan,YU Jianwei,CAI Xiangning,et al.Characteristics of electric loads in Nanjing and relationship between extreme loads and meteorological conditions in summer[J].Meteorological Science and Technology,2021,49(4):637-646.
    [11] 任永建,熊守权,洪国平,等.气象因子对夏季最大电力负荷的敏感性分析[J].气象,2020,46(9):1245-1253. REN Yongjian,XIONG Shouquan,HONG Guoping,et al.Sensitivity analysis of meteorological factors to summer maximum power load[J].Meteorological Monthly,2020,46(9):1245-1253.
    [12] 尹炤寅,范进进,陈幼姣,等.体感温度对夏季气象负荷率变化的影响研究:以湖北省黄石市为例[J].气象,2017,43(5):620-627. YIN Zhaoyin,FAN Jinjin,CHEN Youjiao,et al.Impact of sensible temperature on summer weather-sensitive power load rate in Huangshi city[J].Meteorological Monthly,2017,43(5):620-627.
    [13] 刘炬,刘闯,徐达,等.基于综合气象指数的EA-SNN组合负荷预测模型[J].山东电力技术,2022,49(8):10-14+41. LIU Ju,LIU Chuang,XU Da,et al.EA-SNN combined load forecasting model based on comprehensive meteorological index[J].Shandong Electric Power,2022,49(8):10-14+41.
    [14] 吴迪,王正风.气象敏感性负荷特性分析及预测[J].东北电力技术,2020,41(1):4-8. WU Di,WANG Zhengfeng.Analysis and forecast of whether sensitive load characteristic[J].Northeast Electric Power Technology,2020,41(1):4-8.
    [15] 成丹,刘静,郭淳薇,等.基于积温效应的华中电网电力负荷预测[J].气象科技,2018,46(4):814-821. CHENG Dan,LIU Jing,GUO Chunwei,et al.Prediction of electric loads over central China based on accumulated temperature effect[J].Meteorological Science and Technology,2018,46(4):814-821.
    [16] 朱暾.基于位置数据的空气质量分类预测混合模型研究[D].杭州:浙江大学,2017. ZHU Tun.Research on air quality classification forecasting hybrid model based on position data[D].Hangzhou:Zhejiang University,2017.
    [17] 胡戎,冯仲科,蒋君志伟.基于CheerIO的MEAN Stack气象数据网络爬虫研究[J].农业机械学报,2016,47(6):275-282. HU Rong,FENG Zhongke,JIANG Junzhiwei.Web crawler of atmosphere and weather data based on MEAN stack with CheerIO[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(6):275-282.
    [18] 白红涛,彭苗,牛振涛,等.爬虫技术在分布式能源站负荷预测中的应用[J].科学技术创新,2021(4):62-66. BAI Hongtao,PENG Miao,NIU Zhentao,et al.Application of crawler technology in load forecasting of distributed energy station[J].Scientific and Technological Innovation,2021(4):62-66.
    [19] 李琛,郭文利,吴进,等.北京市夏季日最大电力负荷与气象因子的关系[J].气象与环境学报,2018,34(3):99-105. LI Chen,GUO Wenli,WU Jin,et al.Relationship between daily maximum electric power load and meteorological factors in summer in Beijing[J].Journal of Meteorology and Environment,2018,34(3):99-105.
    [20] 张杰,崔秀云,曲晓黎.邢台市夏季制冷期电力负荷变化特征及其预报模型[J].气象与环境科学,2022,45(4):106-111. ZHANG Jie,CUI Xiuyun,QU Xiaoli.Variation characteristics and prediction model of power load during the summer cooling period in Xingtai city[J].Meteorological and Environmental Sciences,2022,45(4):106-111.
    [21] 马得银,孙波,刘澈.基于天气信息的短期冷热电负荷联合预测方法[J].电网技术,2021,45(3):1015-1022. MA Deyin,SUN Bo,LIU Che.Short-term cooling and heating power load prediction method based on multi-weather information[J].Power System Technology,2021,45(3):1015-1022.
    [22] BUCHELI J,DALHAUS T,FINGER R.Temperature effects on crop yields in heat index insurance[J].Food Policy,2022,107:102214.
    [23] 陆鼎煌,崔淼.北家城市绿化夏季小气候条件对人体的适宜度[M].北京:气象出版社,1984:l44-152. LU Dinghuang,CUI Miao.Suitability of microclimate conditions for human body in Beijia city in summer[M].Beijing:China Meteorological Press,1984:l44-152.
    [24] 刘红敏,时浩,钱嘉鑫,等.基于代换合成法的高校教室综合舒适度研究[J].热科学与技术,2022,21(2):201-208. LIU Hongmin,SHI Hao,QIAN Jiaxin,et al.Research on comprehensive comfort of college classroom based on substitution and synthesis[J].Journal of Thermal Science and Technology,2022,21(2):201-208.
    [25] 詹传骅.基于气象因素和集成学习的长沙市短期电力预测研究[D].长沙:湖南大学,2016. ZHAN Chuanhua.A research of short-term load forecasting of Changsha based on meteorological factors and integrated study[D].Changsha:Hunan University,2016.
    [26] 唐浩.考虑典型气象因素影响的湖南电网夏季日最大负荷预测[D].长沙:长沙理工大学,2013. TANG Hao.The prediction of daily peak load of summer in Hunan Province considering the effects of typical meteorological factors[D].Changsha:Changsha University of Science & Technology,2013.
    [27] 高赐威,李倩玉,苏卫华,等.短期负荷预测中考虑积温效应的温度修正模型研究[J].电工技术学报,2015,30(4):242-248. GAO Ciwei,LI Qianyu,SU Weihua,et al.Temperature correction model research considering temperature cumulative effect in short-term load forecasting[J].Transactions of China Electrotechnical Society,2015,30(4):242-248.
    [28] 金丽莉,谭风雷,吴志坚,等.考虑积温效应的负荷预测研究[J].电力需求侧管理,2013,15(1):7-10+14. JIN Lili,TAN Fenglei,WU Zhijian,et al.The study of load forecasting accounting accumulated temperature effect[J].Power Demand Side Management,2013,15(1):7-10+14.
    [29] 张远亲.气象条件对上海浦东电力需求的影响分析及预报[D].杭州:浙江大学,2005. ZHANG Yuanqin.Study on characteristics of electric load of Pudong and itsrelationship with meteorological elements[D].Hangzhou:Zhejiang University,2005.
    [30] 911查询.天气预报、未来一周15天天气查询—天气预报?911查询[EB/OL].https://tianqi.911cha.com/beijing/,2022-10-18. 911 queries.Weather forecast,15-day weather enquiries in the coming week-Weather forecast-911 enquiries[EB/OL].https://tianqi.911cha.com/beijing/,2022-10-18.
    [31] 董莉娜,张志劲,王茂政.基于历史天气的区域电网负荷预测的研究[J/OL].中国测试,2021:1-7.(2021-07-23).https://kns.cnki.net/kcms/detail/51.1714.TB.20210722.0952. 002.html. DONG Lina,ZHANG Zhijin,WANG Maozheng.Research on regional power grid load forecasting based on historical weather[J/OL].China Measurement & Test,2021:1-7.(2021-07-23).https://kns.cnki.net/kcms/detail/51.1714.TB.20210722.0952.002.html.
    [32] 卢珊,浩宇,王百朋,等.引入积温效应预测夏季西安市电力气象负荷[J].气象科技,2017,45(6):1090-1094. LU Shan,HAO Yu,WANG Baipeng,et al.Forecasting model of meteorological power load in Xi'an in summer based on accumulated temperature effect[J].Meteorological Science and Technology,2017,45(6):1090-1094.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘文娇,沈春明,郭军红,等.夏季气象电力负荷相关性分析模型修正方法——以北京为例[J].电力科学与技术学报,2024,39(2):112-123.
LIU Wenjiao, SHEN Chunming, GUO Junhong, et al. Correction method of correlation analysis model between meteorology and electric power load in summer: a case study of Beijing[J]. Journal of Electric Power Science and Technology,2024,39(2):112-123.

复制
分享
文章指标
  • 点击次数:192
  • 下载次数: 1029
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-05-29
文章二维码