基于二元指数多项式的风速风向联合概率分布
CSTR:
作者:
作者单位:

(三峡大学电气与新能源学院,湖北 宜昌 443002)

通讯作者:

程 杉(1981—),男,博士,教授,博士生导师,主要从事新能源微电网运行优化与控制、电动汽车充换电设施与可再生能源集

中图分类号:

TM614

基金项目:

国家自然科学基金(51607105)


Joint probability distribution of wind speed and direction based on binary exponential polynomial
Author:
Affiliation:

(College of Electrical Engineering & New Energy,China Three Gorges University, Yichang 443002, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    风能分布具有不均匀性,改进风能资源特征评估方法以提升其准确性和全面性对于风电场建设和风能高效利用至关重要。为此,提出基于二元指数多项式的风速风向联合概率分布建模方法,利用线性最小二乘法求解该模型的二元指数多项式参数,并加入归一化常数,使其满足概率密度函数特性,结合多种拟合优度指标函数进行优化,求解二元指数多项式的最优指数,从而获得拟合性能最优的风速风向联合概率分布。采用该模型拟合多个地区风电场的实测数据并与Copula模型进行对比验证,结果分析表明:由于二元指数多项式模型具有更多拟合参数,使该模型在均方根误差、决定系数、赤池信息准则以及平均绝对百分比误差等方面的指标均优于Copula模型,证明基于二元指数多项式的拟合模型可以更准确地拟合风电场的风速风向数据。

    Abstract:

    The distribution of wind energy is uneven, and improving the assessment method of wind energy resource characteristics to enhance its accuracy and comprehensiveness is crucial for wind farm construction and efficient use of wind energy. A modeling method is proposed for the joint probability distribution of wind speed and wind direction based on a binary exponential polynomial. The parameters of the binary exponential polynomial of this model are solved by using linear least squares. A normalization constant is added to make the binary exponential polynomial satisfy the characteristics of the probability density function. It combines multiple goodness-of-fit index functions to solve the optimal index of the binary exponential polynomial, so that obtains the optimal fitting performance of the joint probability distribution of wind speed and direction. The model is used to fit the measured data of wind farms in multiple regions and compared with the Copula model for verification. The results show that due to the more fitting parameters of the binary exponential polynomial, the proposed model is superior to Copula model in the aspects of root mean square error, coefficient of determination, Akaike information criterion and average absolute percentage error. It is proved that the fitting model based on the binary exponential polynomial can more accurately fit the wind speed and direction data of the wind farm.

    参考文献
    [1] 王庆,李玉琛,蒙飞,等.混沌正余弦算法在含风能电力系统经济排放调度中的应用[J].电力系统保护与控制,2022,50(24):172-177. WANG Qing,LI Yuchen,MENG Fei,et al.Application of an improved chaotic sine cosine algorithm in the economic emissionscheduling of a power system with wind energy[J].Power System Protection and Control,2022,50(24):172-177.
    [2] 张智伟,张建平,刘明,等.芦潮港海上风资源变化特性分析[J].发电技术,2022,43(2):260-267. ZHANG Zhiwei,ZHANG Jianping,LIU Ming,et al.Analysis on variation characteristics of offshore wind resources in Luchao Port[J].Power Generation Technology,2022,43(2):260-267.
    [3] 夏婷,张木梓,陈杨,等.全球低风速风电发展现状与展望[J].水力发电,2022,48(6):105-108. XIA Ting,ZHANG Muzi,CHEN Yang,et al.Current status quo and future of global low wind speed power[J].Water Power,2022,48(6):105-108.
    [4] 夏云峰.未来五年全球风电新增装机将超过470 GW[J].风能,2021(10):38-39. XIA Yunfeng.The next five years the global wind power installation will exceed 470 GW[J].Wind Energy,2021(10):38-39.
    [5] 杨京渝,彭丽,罗隆福,等.计及风电消纳的风储系统跟踪计划出力控制策略[J].电力建设,2023,44(9):160-170. YANG Jingyu,PENG Li,LUO Longfu,et al.Wind storage system tracking plan output control strategy considering wind power consumption[J].Electric Power Construction,2023,44(9):160-170.
    [6] 杨本星,王伟,杨明轩,等.辅助风电并网的构网型储能控制策略研究[J].高压电器,2023,59(7):56-64. YANG Benxing,WANG Wei,YANG Mingxuan,et al.Research on grid-forming energy storage control strategy for auxiliary wind power grid-connection[J].High Voltage Apparatus,2023,59(7):56-64.
    [7] 陶鹏,张冰玉,韩桂楠,等.计及源荷双侧风险管理的光储微网两阶段低碳运行优化研究[J].智慧电力,2023,51(11):1-6. TAO Peng,ZHANG Bingyu,HAN Guinan,et al.Two-stage low carbon operation optimization of photovoltaic storage microgrid considering risk management of both source and load sides[J].Smart Power,2023,51(11):1-6.
    [8] BAGCI K,ARSLAN T,CELIK H E.Inverted Kumarswamy distribution for modeling the wind speed data:Lake Van,Turkey[J].Renewable and Sustainable Energy Reviews,2021,135:110110.
    [9] KOIVISTO M,SEPP?NEN J,MELLIN I,et al.Wind speed modeling using a vector autoregressive process with a time-dependent intercept term[J].International Journal of Electrical Power & Energy Systems,2016,77:91-99.
    [10] AKGüL F G,?ENO?LU B,ARSLAN T.An alternative distribution to Weibull for modeling the wind speed data:inverse Weibull distribution[J].Energy Conversion and Management,2016,114:234-240.
    [11] WANG L,LIU J,QIAN F.Wind speed frequency distribution modeling and wind energy resource assessment based on polynomial regression model[J].International Journal of Electrical Power & Energy Systems,2021,130:106964.
    [12] KAMISAN N A B,HUSSIN A G,ZUBAIRI Y Z.Finding the best circular distribution for southwesterly monsoon wind direction in Malaysia[J].Sains Malaysiana,2010,39(3):387-393.
    [13] MASSERAN N,RAZALI A M,IBRAHIM K,et al.Fitting a mixture of von mises distributions in order to model data on wind direction in Peninsular Malaysia[J].Energy Conversion and Management,2013,72:94-102.
    [14] MIAO S,YANG H,GU Y.A wind vector simulation model and its application to adequacy assessment[J].Energy,2018,148:324-340.
    [15] LIU X,HAN W,GUO X,et al.Fatigue lifespan assessment of stay cables by a refined joint probability density model of wind speed and direction[J].Engineering Structures,2022,252:113608.
    [16] HAN Q,HAO Z,HU T,et al.Non-parametric models for joint probabilistic distributions of wind speed and direction data[J].Renewable Energy,2018,126:1032-1042.
    [17] SUMAIR M,AIZED T,BHUTTA M M A,et al.Method of four moments mixture-a new approach for parametric estimation of Weibull probability distribution for wind potential estimation applications[J].Renewable Energy,2022,191:291-304.
    [18] OUARDA T B M J,CHARRON C,SHIN J Y,et al.Probability distributions of wind speed in the UAE[J].Energy Conversion and Management,2015,93:414-434.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

熊昊然,程 杉.基于二元指数多项式的风速风向联合概率分布[J].电力科学与技术学报,2024,39(2):207-213.
XIONG Haoran, CHENG Shan. Joint probability distribution of wind speed and direction based on binary exponential polynomial[J]. Journal of Electric Power Science and Technology,2024,39(2):207-213.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-05-29
文章二维码