基于K‑I‑ELM多模型集成的分布式光伏出力短期预测方法
CSTR:
作者:
作者单位:

(1.国网湖南省电力有限公司经济技术研究院,湖南 长沙 410004;2.能源互联网供需运营湖南省重点实验室,湖南 长沙 410004;3.长沙理工大学电气与信息工程学院,湖南 长沙 410114)

通讯作者:

孙辰昊(1991—),男,博士,讲师,主要从事电力数据挖掘及应用和人工智能的研究;E?mail:chenhaosun@csust.edu.cn

中图分类号:

TM615

基金项目:

国家自然科学基金(52207074);国网湖南省电力有限公司科技项目(5216A22001J);湖南省科技创新平台与人才计划(2019TP1053)


Short‑term prediction method of distributed PV output power based on K‑I‑ELM multi‑model integration
Author:
Affiliation:

(1. Economic & Technical Research Institute,State Grid Hunan Electric Power Co., Ltd.,Changsha 410004, China; 2.Hunan Key Laboratory of Energy Internet Supply‑demand and Operation, Changsha 410004, China;3.School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    为响应“双碳”目标,高比例新能源接入的新型电力系统已成为下一个发展目标。光伏作为当前电力系统能源发电主体形式之一,其出力特性数据尚存在多源、异构及高维等分布特点,导致不同特征作用机理、机制较为复杂,继而加大分布式光伏系统出力的预测难度。为此,首先构建核主成分分析(kernel principle component analysis,KPCA)模型,通过核函数在特征空间中依据不同特征的有效信息蕴含度提取主成分;然后采用信息熵(information entropy, IE)模型,根据各主成分信息负载度量加权系数,综合求解相应作用权重;最后依据特征评估结果,针对性设置极限学习机(extreme learning machine,ELM)网络参数,降低预测不确定度。最终整合多类别数据挖掘模型,构建K?I?ELM预测方法,在复杂数据环境下实施光伏出力短期预测。基于某实际台区光伏发电数据进行案例分析,论证所提方法针对不同数据环境的适应性及较高的预测精度。

    Abstract:

    In response to the "dual carbon" strategy, a new type of power system with a high proportion of renewable energy access has become the next development goal. As one of the main forms of current energy generation, photovoltaic (PV) power generation has characteristics such as multi-source, heterogeneous, and high-dimensional data distribution, which makes the mechanisms and effects of different features relatively complex and subsequently increases the difficulty of predicting the output of distributed PV systems. To address this, multiple categories of data mining models are integrated to construct an K-I-ELM prediction method for short-term PV output prediction in complex data environments. First, a kernel principal component analysis (KPCA) model is constructed to extract principal components based on the effective information contained in different features in the feature space through a kernel function. An information entropy (IE) model is employed to measure the weighting coefficients based on the information load of each principal component and comprehensively solve the corresponding effect weights. Finally, based on the feature evaluation results, the network parameters of the extreme learning machine (ELM) are set specifically to reduce prediction uncertainty. A case study based on actual PV power generation data from a certain substation demonstrates the adaptability and high prediction accuracy of the proposed method in different data environments.

    参考文献
    [1] 丁明,王伟胜,王秀丽,等.大规模光伏发电对电力系统影响综述[J].中国电机工程学报,2014,34(1):1-14. DING Ming,WANG Weisheng,WANG Xiuli,et al.A review on the effect of large-scale PV generation on power systems[J].Proceedings of the CSEE,2014,34(1):1-14.
    [2] 贾科,宣振文,林瑶琦,等.基于Adaboost算法的并网光伏发电系统的孤岛检测法[J].电工技术学报,2018,33(5):1106-1113. JIA Ke,XUAN Zhenwen,LIN Yaoyi,et al.An islanding detection method for grid-connected photovoltaic power system based on Adaboost algorithm[J].Transactions of China Electrotechnical Society,2018,33(5):1106-1113.
    [3] 杜磊,赵涛,冯之健,等.单相短路故障条件下级联模块中压光伏发电系统的有功功率回流抑制[J].电工技术学报,2022,37(20):5201-5213. DU Lei,ZHAO Tao,FENG Zhijian,et al.Active power backflow suppression of cascaded module medium-voltage PV power generation system during single-phase short-circuit fault[J].Transactions of China Electrotechnical Society,2022,37(20):5201-5213.
    [4] 田雨果,王彤,邢其鹏,等.计及虚拟惯量控制与低电压穿越的光伏发电系统暂态稳定分析[J].电力系统保护与控制,2022,50(2):52-59. TIAN Yuguo,WANG Tong,XING Qipeng,et al.Transient stability analysis of a photovoltaic generation system considering virtual inertia control and low voltage ride-through[J].Power System Protection and Control,2022,50 (2):52-59.
    [5] 虎智峰,陈静,张婧菲,等.考虑新能源不确定性边界的主动配电网优化调度[J].智慧电力,2022,50 (11):48-55. HU Zhifeng,CHEN Jing,ZHANG Jingfei,et al.Optimal dispatch of active distribution network considering uncertainty boundary of renewable power generation[J].Smart Power,2022,50 (11):48-55.
    [6] 蔡金锭,叶荣,陈汉城.回复电压多元参数回归分析的油纸绝缘老化诊断方法[J].电工技术学报,2018,33(21):5080-5089. CAI Jinding,YE Rong,CHEN Hancheng.Aging diagnosis method of oil-paper insulation based on multiple parameter regression analysis of recovery voltage[J].Transactions of China Electrotechnical Society,2018,33(21):5080-5089.
    [7] 李琰,吕南君,刘雪涛,等.考虑新能源消纳和网损的分布式光伏集群出力评估方法[J].电力建设,2022,43 (10):136-146.. LI Yan,Lü Nanjun,LIU Xuetao,et al.Output evaluation method of distributed photovoltaic cluster considering renewable energy accommodation and power loss of network[J].Electric Power Construction,2022,43(10):136?146.
    [8] 李民,杨暑森,李科锋,等.覆雪状态下光伏发电功率预测方法研究[J].高压电器,2023,59 (9):250-257. LI Min,YANG Shusen,LI Kefeng,et al.Research on power prediction method of photovoltaic power generation under snow coating conditions[J].High Voltage Apparatus,2023,59 (9):250-257.
    [9] 王文森,贺馨仪,杨晓西,等.基于多参量数据回归分析的电力变压器状态监测方法[J].电网与清洁能源,2023,39 (4):83-90. WANG Wensen,HE Xinyi,YANG Xiaoxi,et al.Power transformer condition monitoring method based on multivariate statistical analysis[J].Power System and Clean Energy,2023,39 (4):83-90.
    [10] YAZDANBAKSH O,KRAHN A,DICK S.Predicting solar power output using complex fuzzy logic[C]//Joint IFSA World Congress and NAFIPS Annual Meeting Edmonton:IFSA World Congress and NAFIPS Annual Meeting,Edmonton,AB,Canada,2013.
    [11] 张惠娟,刘琪,岑泽尧,等.基于GWO-MLP的光伏系统输出功率短期预测模型[J].电测与仪表,2022,59 (7):72-77+113. ZHANG Huijuan,LIU Qi,CEN Zeyao,et al.Short-term prediction model of output power of photovoltaic system based on GWO-MLP[J].Electrical Measurement & Instrumentation,2022,59 (7):72-77+113.
    [12] 冯昌森,张瑜,文福拴,等.基于深度期望Q网络算法的微电网能量管理策略[J].电力系统自动化,2022,46 (3):14-22.. FENG Changsen,ZHANG Yu,WEN Fushuan,et al.Energy management strategy for microgrid based on deep expected Q network algorithm[J].Automation of Electric Power Systems,2022,46 (3):14-22.
    [13] 赵亮,刘友波,余莉娜,等.基于深度信念网络的光伏电站短期发电量预测[J].电力系统保护与控制,2019,47(18):11-19. ZHAO Liang,LIU Youbo,YU Lina,et al.Short-term power generation forecast of PV power station based on deep belief network[J].Power System Protection and Control,2019,47(18):11-19.
    [14] 杨晶显,张帅,刘继春,等.基于VMD和双重注意力机制LSTM的短期光伏功率预测[J].电力系统自动化,2021,45(3):174-182. YANG Jingxian,ZHANG Shuai,LIU Jichun,et al.Short-term photovoltaic power prediction based on variational mode decomposition and long short-term memory with dual-stage attention mechanism[J].Automation of Electric Power Systems,2021,45(3):174-182.
    [15] 殷豪,陈云龙,孟安波,等.基于二次自适应支持向量机的光伏输出功率预测[J].太阳能学报,2019,48(7):1866-1873. YIN Hao,CHEN Yunlong,MENG Anbo,et al.Forecasting photovoltaic power based on quadric self-adaptive SVM model[J].Acta Energiae Solaris Sinica,2019,48(7):1866-1873.
    [16] 李元诚,白恺,曲洪达,等.基于粒子群—稀疏贝叶斯混合算法的光伏功率预测方法[J].太阳能学报,2016,37(5):1153-1159. LI Yuancheng,BAI Kai,QU Hongda,et al.A photovoltaic power forecasting model using sparse bayesian regression optimized by particle swarm algorithm[J].Acta Energiae Solaris Sinica,2016,37(5):1153-1159.
    [17] 叶林,陈政,赵永宁,等.基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J].电力系统自动化,2015,39(16):16-22. YE Lin,CHEN Zheng,ZHAO Yongning,et al.Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J].Automation of Electric Power Systems,2015,39(16):16-22.
    [18] 荀超,陈伯建,吴翔宇,等.基于改进K-means算法的电力短期负荷预测方法研究[J].电力科学与技术学报,2022,37(1):90-95. XUN Chao,CHEN Bojian,WU Xiangyu,et al.Research on short-term power load forecasting method based on improved K-means algorithm[J].Journal of Electric Power Science and Technology,2022,37(1):90-95.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江卓翰,周胜瑜,何禹清,等.基于K‑I‑ELM多模型集成的分布式光伏出力短期预测方法[J].电力科学与技术学报,2024,39(4):146-152.
JIANG Zhuohan, ZHOU Shengyu, HE Yuqing, et al. Short‑term prediction method of distributed PV output power based on K‑I‑ELM multi‑model integration[J]. Journal of Electric Power Science and Technology,2024,39(4):146-152.

复制
分享
文章指标
  • 点击次数:231
  • 下载次数: 1022
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-09-10
文章二维码