基于S变换与PSO‑GRNN的行波精确检测方法
作者:
作者单位:

(长沙理工大学电网安全监控技术教育部工程研究中心,湖南 长沙 410114)

通讯作者:

李泽文(1975—),男,教授,博士生导师,主要从事电网故障行波定位与保护理论研究;E?mail:820288556@qq.com

中图分类号:

TM773

基金项目:

湖南省科技创新人才计划科技创新团队项目(2021RC4061);长沙理工大学研究生“实践创新与创业能力提升计划”项目(SJCX202154)


A precise detection method of traveling wave based on S‑transform and PSO‑GRNN
Author:
Affiliation:

(Ministry of Engineering Center for Power System Security and Supervisory Control Technology, Changsha University of Science & Technology, Changsha 410114, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对变电站设备产生反射行波,行波信号测量时存在入射波与反射波混叠的问题,提出一种基于S变换与粒子群优化广义回归神经网络(particle swarm optimization and generalized regression neural network,PSO?GRNN)算法的行波精确检测方法。首先,对混叠行波和真实入射行波信号分别进行S变换,得到两者的S矩阵;然后,对混叠行波和真实入射行波信号的S矩阵进行维数重构,将其转化为向量,并作为PSO?GRNN算法的输入和输出进行训练学习,建立分离混叠行波信号的网络模型;最后,根据此模型从混叠行波信号中分离出入射行波信号的S矩阵并进行S逆变换,得到纯净入射行波。仿真结果表明,分离出的入射行波陡度高、时频特征更突出,为提高现有行波保护的可靠性与行波定位的准确性提供了新思路。

    Abstract:

    Reflected traveling waves are generated by substation equipment, and the incident waves and reflected waves are overlapped during traveling wave signal measurement. To address these issues, a precise detection method of traveling waves based on S-transform and particle swarm optimization and generated regression neural network algorithm (PSO-GRNN) is proposed. Firstly, the S matrixes of the overlapped traveling wave signal and the real incident traveling wave signal are obtained by the S transform, respectively. Secondly, the S matrixes of the overlapped traveling wave signal and the real incident traveling wave signal are reconstructed in terms of dimensionality into a vector, which is used as the input and output of PSO-GRNN for training and learning, and the network model for separating the overlapped traveling wave signal is established. Finally, according to this model, the S matrix of the incident traveling wave signal is separated from the overlapped traveling wave signal, and the S-inverse transform is performed to obtain the pure incident traveling wave. The simulation results show that the separated incident traveling wave has higher steepness and more prominent time-frequency characteristics, which provides a new idea to improve the reliability of existing traveling wave protection and the accuracy of traveling wave positioning.

    参考文献
    相似文献
    引证文献
引用本文

王 帅,李泽文,吴骢羽,等.基于S变换与PSO‑GRNN的行波精确检测方法[J].电力科学与技术学报,2024,39(6):11-21.
WANG Shuai, LI Zewen, WU Congyu, et al. A precise detection method of traveling wave based on S‑transform and PSO‑GRNN[J]. Journal of Electric Power Science and Technology,2024,39(6):11-21.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-02-14
文章二维码