考虑天然来水量预报的小水电站富集型系统汛期优化调度策略
作者:
作者单位:

(1.国网浙江省电力有限公司丽水供电公司,浙江 丽水 323000;2.杭州沃瑞电力科技有限公司,浙江 杭州 310012)

通讯作者:

林振智(1979—),男,博士,教授,主要从事电力系统规划与运行、电力大数据挖掘等研究;E?mail:275732950@qq.com

中图分类号:

TM61;TM73

基金项目:

国家自然科学基金(U2166206);国家电网浙江省电力有限公司科技项目(5211LS22001J)


Optimal scheduling strategy for small hydropower enrichment system during flood season based on natural runoff forecast
Author:
Affiliation:

(1.Lishui Power Supply Company,State Grid Zhejiang Electric Power Co.,Ltd., Lishui 323000, China; 2.Hangzhou WoRui Electric Power Technology Co., Ltd., Hangzhou 310012, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | | | |
  • 文章评论
    摘要:

    有效利用天然来水量预报信息可提高水电站汛期库容上限,在保证防洪安全的前提下充分利用水电资源,提升电网经济性。针对含高比例小水电的电力系统,提出一种综合考虑流域水电站群汛期预期来水量和弹性库容上限的优化调度策略。首先,提出基于最大信息系数(maximal information coefficient, MIC)的气象?水文预报因子筛选方法并构建基于注意力机制的Informer天然来水量预报模型;其次,考虑预报信息的准确性和水电站的预泄能力,提出基于机会约束优化的水电站弹性库容上限的确定方法,将其用于挖掘汛期水电站库容资源;最后,以浙江省丽水市某流域小水电站群为例进行算例分析,结果表明所提模型具有精确的预报效果,可以提高小水电站库容资源的利用效率,减少系统运行成本。

    Abstract:

    Effective use of natural runoff forecast information can increase the upper limit of storage capacity of hydropower stations during flood season, make full use of hydropower resources under the premise of ensuring flood control safety, and improve the economy of power grids. For the power system with a high proportion of small hydropower resources, an optimal scheduling strategy is proposed, which takes into account the expected runoff and the upper limit of elastic storage capacity of hydropower stations within the basin during flood season. Firstly, a screening method of meteorological and hydrological forecast factors is proposed based on the maximal information coefficient (MIC), and an Informer natural runoff forecast model based on the attention mechanism is constructed. Secondly, by considering the accuracy of forecast information and the pre-discharge capacity of hydropower stations, a method of determining the upper limit of elastic storage capacity of hydropower stations based on chance-constrained optimization is proposed to excavate storage resources of hydropower stations during flood season. Finally, a case study of a small hydropower station group in Lishui, Zhejiang Province is carried out. The results show that the proposed model has an accurate forecast effect, which can improve the utilization efficiency of storage resources of small hydropower stations and reduce the system operation cost.

    参考文献
    [1] 魏明奎,蔡绍荣,江栗.高水电比重系统中梯级水电群与风光电站协调调峰优化运行策略[J].电力科学与技术学报,2021,36(2):199-208.WEI Mingkui,CAI Shaorong,JIANG Li.Peak-shaving co-optimization strategies of cascaded hydropower and wind-photovoltaic generation in systems with high penetration of hydropower[J].Journal of Electric Power Science and Technology,2021,36(2):199-208.
    [2] 潘华,姚正,黄玲玲,等.考虑分布式电源及需求响应不确定性的园区综合能源系统经济调度[J].电力科学与技术学报,2022,37(2):94-105.PAN Hua,YAO Zheng,HUANG Lingling,et al.Economic dispatch of park integrated energy system considering the uncertainty of distribution generation and demand response[J].Journal of Electric Power Science and Technology,2022,37(2):94-105.
    [3] 郭俊,陆佳政,张杰,等.基于数值预报模式的柘溪水库流域径流预报系统[J].人民长江,2017,48(6):28-32.GUO Jun,LU Jiazheng,ZHANG Jie,et al.Study on runoff forecasting system for Zhexi Reservoir Basin based on numerical forecast model[J].Yangtze River,2017,48(6):28-32.
    [4] YUAN X H,CHEN C,LEI X H,et al.Monthly runoff forecasting based on LSTM?ALO model[J].Stochastic Environmental Research and Risk Assessment,2018,32(8):2199-2212.
    [5] 郭玉雪,许月萍,陈浩,等.基于多种递归神经网络的海岛水库径流预报[J].水力发电学报,2021,40(9):14-26.GUO Yuxue,XU Yueping,CHEN Hao,et al.Reservoir inflow forecasting for island areas based on multiple recurrent neural networks[J].Journal of Hydroelectric Engineering,2021,40(9):14-26.
    [6] ZHU Q,HAN J,CHAI K,et al.Time series analysis based on informer algorithms:A survey[J].Symmetry,2023,15(4):951.
    [7] ZHOU H Y,ZHANG S H,PENG J Q,et al.Informer:beyond efficient transformer for long sequence time-series forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(12):11106-11115.
    [8] 王开艳,罗先觉,吴玲,等.清洁能源优先的风?水?火电力系统联合优化调度[J].中国电机工程学报,2013,33(13):27-35.WANG Kaiyan,LUO Xianjue,WU Ling,et al.Optimal dispatch of wind-hydro-thermal power system with priority given to clean energy[J].Proceedings of the CSEE,2013,33(13):27-35.
    [9] 程春田.碳中和下的水电角色重塑及其关键问题[J].电力系统自动化,2021,45(16):29-36.CHENG Chuntian.Function remolding of hydropower systems for carbon neutral and its key problems[J].Automation of Electric Power Systems,2021,45(16):29-36.
    [10] 李进,蔡泽祥,岑伯维,等.基于功率能量特性的含小水电微电网储能容量配置方法[J].电力建设,2024,45(4):123-133.LI Jin,CAI Zexiang,CEN Bowei,et al.Energy storage capacity configuration method for microgrids containing small hydropower based on power-energy characteristics[J].Electric Power Construction,2024,45(4):123-133.
    [11] 温世杨,余娟,代伟,等.考虑水电库容弹性的电力系统经济调度[J].电力系统自动化,2020,44(19):73-82.WEN Shiyang,YU Juan,DAI Wei,et al.Economic dispatch of power system considering capacity flexibility of hydropower reservoir[J].Automation of Electric Power Systems,2020,44(19):73-82.
    [12] 罗朝春,李湘旗,姚赛.水电不确定条件下电力公司最优购电策略分析[J].电力科学与技术学报,2014,29(2):89-94.LUO Chaochun,LI Xiangqi,YAO Sai.Optimal electricity-purchasing strategy of power company based on uncertain hydropower[J].Journal of Electric Power Science and Technology,2014,29(2):89-94.
    [13] 雷苏琪,何中政,闫峰,等.万安水库主汛期运行水位动态控制预泄策略研究[J].水电能源科学,2022,40(11):73-76.LEI Suqi,HE Zhongzheng,YAN Feng,et al.Research on pre-discharge strategy of dynamic control of flood limited water level in main flood season of Wan’an Reservoir[J].Water Resources and Power,2022,40(11):73-76.
    [14] 陈雨鸽,陈昌铭,张思,等.考虑时空耦合的小水电富集型虚拟电厂优化调度策略[J].电力系统自动化,2022,46(18):90-98.CHEN Yuge,CHEN Changming,ZHANG Si,et al.Optimal dispatching strategy of small hydropower enriched virtual power plant considering temporal-spatial coupling[J].Automation of Electric Power Systems,2022,46(18):90-98.
    [15] MAGGIONI V,MASSARI C.On the performance of satellite precipitation products in riverine flood modeling:a review[J].Journal of Hydrology,2018,558:214-224.
    [16] 效文静,周建中,杨建华,等.基于机器学习的长江干流中长期径流预报[J].水电能源科学,2022,40(9):31-34+26.XIAO Wenjing,ZHOU Jianzhong,YANG Jianhua,et al.Medium long-term runoff forecasting of Yangtze River mainstream based on machine learning[J].Water Resources and Power,2022,40(9):31-34+26.
    [17] HEMMATI R.Optimal cogeneration and scheduling of hybrid hydro-thermal-wind-solar system incorporating energy storage systems[J].2018,10(1):014102.
    [18] JAWAD M,NADEEM M S A,SHIM S O,et al.Machine learning based cost effective electricity load forecasting model using correlated meteorological parameters[J].IEEE Access,2020,8:146847-146864.
    [19] 苏宜靖,谷炜,赵依,等.考虑气象因子的区域电网梅雨期负荷预测[J].浙江电力,2019,38(12):1-7.SU Yijing,GU Wei,ZHAO Yi,et al.Load forecasting of regional power grid during the plum rains considering meteorological factors[J].Zhejiang Electric Power,2019,38(12):1-7.
    [20] 杨秀,胡钟毓,田英杰,等.基于Attention机制的CNN-GRU配网线路重过载短期预测方法[J].电力科学与技术学报,2023,38(1):201-209.YANG Xiu,HU Zhongyu,TIAN Yingjie,et al.Short-term heavy overload forecasting method of distribution net line based on CNN-GRU with attention mechanism[J].Journal of Electric Power Science and Technology,2023,38(1):201-209.
    [21] HUANG S Z,LI P,HUANG Q,et al.The propagation from meteorological to hydrological drought and its potential influence factors[J].Journal of Hydrology,2017,547:184-195.
    [22] 张友,李聪波,林利红,等.数据不完备下基于Informer的离心鼓风机故障趋势预测方法[J].计算机集成制造系统,2023,29(1):133-145.ZHANG You,LI Congbo,LIN Lihong,et al.Centrifugal blower fault trend prediction method based on Informer with incomplete data[J].Computer Integrated Manufacturing Systems,2023,29(1):133-145.
    [23] 张政,武新宇,程春田,等.计及弃水电量价值的水火电短期联合调度模型[J].电力自动化设备,2022,42(11):78-85.ZHANG Zheng,WU Xinyu,CHENG Chuntian,et al.Short-term combined dispatching model of hydro-thermal power considering abandoned hydropower value[J].Electric Power Automation Equipment,2022,42(11):78-85.
    [24] 徐博强,赵建立,张沛超,等.基于负荷准线和纳什谈判的高比例新能源消纳方法[J].电力系统自动化,2023,47(15):36-45.XU Boqiang,ZHAO Jianli,ZHANG Peichao,et al.High-proportion renewable energy accommodation method based on customer directrix load and Nash bargaining[J].Automation of Electric Power Systems,2023,47(15):36-45.
    [25] 彭利鸿,周建中,黄竟择,等.适应电网需求的三峡水库汛期洪水资源利用研究[J].水电能源科学,2021,39(8):76-80.PENG Lihong,ZHOU Jianzhong,HUANG Jingze,et al.Research on flood resources utilization of Three Gorges Reservoir in flood season adapted to grid demand[J].Water Resources and Power,2021,39(8):76-80.
    [26] 申建建,张秀飞,王健,等.求解水电站日负荷优化分配的混合整数非线性规划模型[J].电力系统自动化,2018,42(19):34-40.SHEN Jianjian,ZHANG Xiufei,WANG Jian,et al.Mixed-integer nonlinear programming model for daily load optimization of hydropower plant[J].Automation of Electric Power Systems,2018,42(19):34-40.
    [27] 李伏才,李湘旗,罗朝春,等.考虑多重约束和计划-市场协调的跨省跨区月度购电决策[J].电力科学与技术学报,2021,36(1):206-215.LI Fucai,LI Xiangqi,LUO Zhaochun,et al.Monthly purchasing decisions across provinces and regions considering multiple constraints and plan-market coordination[J].Journal of Electric Power Science and Technology,2021,36(1):206-215.
    [28] 夏翔,吴晓刚,陶毓锋,等.考虑小水电时空耦合特性的虚拟电厂低碳运行策略[J].浙江电力,2022,41(6):22-31.XIA Xiang,WU Xiaogang,TAO Yufeng,et al.A low-carbon operation strategy for virtual power plant considering spatial-temporal coupling characteristics of small hydropower plants[J].Zhejiang Electric Power,2022,41(6):22-31.
    [29] 曲明,丁涛,李立,等.从NP-Hard到多项式时间算法的大规模机组组合近似线性规划:双重凸包模型[J].中国电机工程学报,2022,42(9):3261-3276.QU Ming,DING Tao,LI Li,et al.An approximate linear program from an NP-hard to a polynomial time complexity for a large-scale unit commitment:dual convex hull model[J].Proceedings of the CSEE,2022,42(9):3261-3276.
    [30] YU Y N,GUAN Y P,CHEN Y H.An extended integral unit commitment formulation and an iterative algorithm for convex hull pricing[J].IEEE Transactions on Power Systems,2020,35(6):4335-4346.
    [31] 任鹏哲,刘友波,刘挺坚,等.基于互信息贝叶斯网络的配电网拓扑鲁棒辨识算法[J].电力系统自动化,2021,45(9):55-62.REN Pengzhe,LIU Youbo,LIU Tingjian,et al.Robust identification algorithm for distribution network topology based on mutual-information Bayesian network[J].Automation of Electric Power Systems,2021,45(9):55-62.
    [32] XUE Y,LI R,HUA X,et al.Short-term photovoltaic power prediction of bi-LSTM based on MIC[C]//2021 6th International Conference on Power and Renewable Energy (ICPRE).IEEE,2021:1107-1111.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜倩昀,周 升,李祖鑫,等.考虑天然来水量预报的小水电站富集型系统汛期优化调度策略[J].电力科学与技术学报,2024,39(6):33-42.
DU Qianyun, ZHOU Sheng, LI Zuxin, et al. Optimal scheduling strategy for small hydropower enrichment system during flood season based on natural runoff forecast[J]. Journal of Electric Power Science and Technology,2024,39(6):33-42.

复制
分享
文章指标
  • 点击次数:54
  • 下载次数: 106
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-02-14
文章二维码