考虑耦合影响的数智化电缆系统的系统动力学安全评估方法
作者:
作者单位:

(1.上海电力大学能源电力科创中心,上海 200082;2.上海电力大学电气工程学院,上海 200090)

通讯作者:

谢敬东(1968—),男,博士,教授,主要从事电力市场建设及其监管、智能微电网和配电网安全分析等研究;E?mail:xie_jd@shiep.edu.cn

中图分类号:

TM726.4

基金项目:

国家自然科学基金(51507099)


Dynamics safety evaluation method for digitally intelligent cable systems considering coupling effects
Author:
Affiliation:

(1.Science Innovation Center of Energy and Electric Power, Shanghai University of Electric Power, Shanghai 200082, China; 2.College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • | | | |
  • 文章评论
    摘要:

    近年来,数智化电缆线路系统中安装了不同类型的电气设备在线监测装置,但这些在线监测装置相对独立,采集到的运行数据未得到综合分析,难以起到综合防范安全事故的效果。为此,提出一套考虑耦合影响的数智化电缆系统动力学安全评估模型。首先,选取数智化电缆线路系统的电气和非电气关键特征参量并进行分类;其次,建立安全评估因果关系图,设计模型功能,分析并搭建电缆系统动力学流图;再次,应用相互作用矩阵确定变量权重和建立最优模型训练参数,分别构建不同类型变量与设备之间故障概率函数;然后,依据串联模型实现对整个电缆系统的安全评估,并将其转化为系统动力学方程,搭建数智化电缆系统安全评估模型;最后,以某地区电缆线路为例评估其安全状态。结果表明,本模型处理复杂电缆系统时考虑了多变量之间的耦合影响,能够实现对数智化电缆的全面评估,有效保证其运行安全。

    Abstract:

    In recent years, various types of online monitoring devices have been installed in the digitally intelligent cable line system for electrical equipment. However, these online monitoring devices are relatively independent, and the monitored operation data is not comprehensively analyzed. As a result, it becomes challenging to effectively prevent safety accidents. To address this issue, a dynamics safety evaluation model for digitally intelligent cable systems considering coupling effects is proposed. Firstly, the electrical and non-electrical key characteristic parameters of the digitally intelligent cable line system are selected and classified. Secondly, a causality diagram that can be used for safety evaluation is established, and model functions are designed to analyze and build a dynamics flow diagram for the cable system. To determine the variable weights, an interaction matrix is employed, allowing for the establishment of optimal model training parameters. Failure probability functions are constructed for different types of variables and devices. Additionally, the safety evaluation of the entire cable system is achieved through a tandem model, which is transformed into a system dynamics equation to create a safety evaluation model for the digitally intelligent cable system. Finally, the safety state of a regional cable line is evaluated. The results demonstrate that this model effectively handles complex cable systems by considering the coupling effects between multiple variables. It enables a comprehensive safety evaluation of digitally intelligent cables and ensures their reliable operation.

    参考文献
    [1] 饶显杰,徐忠林,刘翔宇,等.基于反射系数与核函数构建的新型电缆缺陷诊断方法[J].电工技术学报,2024,39(7):2184-2192+2213.RAO Xianjie,XU Zhonglin,LIU Xiangyu,et al.A new cable defect diagnosis method based on reflection coefficient and kernel function construction[J].Transactions of China Electrotechnical Society,2024,39(7):2184-2192+2213.
    [2] 魏文青,淡淑恒.基于有限元和神经网络的电缆输送新能源极限能力评估[J].电力科学与技术学报,2023,38(1):191-200.WEI Wenqing,DAN Shuheng.Evaluation of ultimate capacity of cable transmission new energy based on finite element and neural network[J].Journal of Electric Power Science and Technology,2023,38(1):191-200.
    [3] 张育粱,夏向阳,夏君山,等.基于Bagging-异质k近邻的输电电缆故障诊断方法[J].高压电器,2023,59(5):104-112+121. ZHANG Yuliang,XIA Xiangyang,XIA Junshan,et al.Fault diagnosis method for transmission cables based on bagging-hexogeneous k-nearest neighbor[J].High Voltage Apparatus,2023,59(5):104-112+121.
    [4] 王志武,涂画,李力行,等.基于时频域反射法的核电站仪控电缆缺陷检测[J].电力工程技术,2023,42(5):240-249. WANG Zhiwu,TU Hua,LI Lixing,et al.Defect detection of I & C cable in NPP based on TFDR[J].Electric Power Engineering Technology,2023,42(5):240-249.
    [5] 王晓卫,王雪,王毅钊,等.基于图像信息熵与多元变分模态分解的电缆局放信号去噪方法[J].电工技术学报,2024,39(13):4100-4115+4152.WANG Xiaowei,WANG Xue,WANG Yizhao,et al.A denoising algorithm for cable partial discharge signals based on image information entropy and multivariate variational mode decomposition[J].Transactions of China Electrotechnical Society,2024,39(13):4100-4115+4152.
    [6] 刘炎,夏向阳,李明德,等.高压电力电缆轨迹法在线监测方法[J].电力科学与技术学报,2019,34(3):202-210.LIU Yan,XIA Xiangyang,LI Mingde,et al.Research on online monitoring system based on locus method of HV power cable[J].Journal of Electric Power Science and Technology,2019,34(3):202-210.
    [7] 刘永莉,熊豪文,肖衡林,等.基于有限元的综合管廊电缆温度场分布研究[J].电力科学与技术学报,2022,37(6):82-90.LIU Yongli,XIONG Haowen,XIAO Henglin,et al.Study on temperature field distribution of pipe gallery cable based on finite element method[J].Journal of Electric Power Science and Technology,2022,37(6):82-90.
    [8] WANG W W,YAN X L,LI S T,et al.Failure of submarine cables used in high-voltage power transmission:characteristics,mechanisms,key issues and prospects[J].IET Generation,Transmission & Distribution,2021,15(9):1387-1402.
    [9] 袁婧,周承科,周文俊,等.基于时间延迟理论的高压电缆巡检周期优化[J].高电压技术,2021,47(5):1640-1648.YUAN Jing,ZHOU Chengke,ZHOU Wenjun,et al.Maintenance scheduling for HV cable based on the delay-time concept[J].High Voltage Engineering,2021,47(5):1640-1648.
    [10] 胡思洋,杨健维,廖凯,等.计及大规模电动汽车接入的配电网故障分析方法[J].电力系统保护与控制,2022,50(16):33-46.HU Siyang,YANG Jianwei,LIAO Kai,et al.Fault analysis method for an urban distribution network considering large-scale electric vehicle access[J].Power System Protection and Control,2022,50(16):33-46.
    [11] 魏勇,崔俊彬,刘辛彤,等.基于改进动态故障树的电力系统广域保护通信系统可靠性分析方法[J].电力系统保护与控制,2021,49(23):171-177.WEI Yong,CUI Junbin,LIU Xintong,et al.A reliability analysis method power system wide area protection communication system based on an improved dynamic fault tree[J].Power System Protection and Control,2021,49(23):171-177.
    [12] 王文焕,郭鹏,祝洁,等.基于故障树及贝叶斯网络的继电保护系统风险评估及故障定位方法[J].电力科学与技术学报,2021,36(4):81-90.WANG Wenhuan,GUO Peng,ZHU Jie,et al.Fault positioning and risk assessment method of relay protection based on fault tree and Bayesian network[J].Journal of Electric Power Science and Technology,2021,36(4):81-90.
    [13] 杨威,蒲彩霞,杨坤,等.基于CNN-GRU组合神经网络的变压器短期故障预测方法[J].电力系统保护与控制,2022,50(6):107-116.YANG Wei,PU Caixia,YANG Kun,et al.Short-term fault prediction method for a transformer based on a CNN-GRU combined neural network[J].Power System Protection and Control,2022,50(6):107-116.
    [14] 段双明,徐超.基于改进残差网络的锂离子电池故障诊断[J].电池,2023,53(3):257-261.DUAN Shuangming,XU Chao.Fault diagnosis of Li-ion battery based on improved residual network[J].Battery Bimonthly,2023,53(3):257-261.
    [15] ZHANG X Y,HE H F.Condition evaluation of storage equipment based on improved D-S evidence theory[J].MATEC Web of Conferences,2017,95:14007.
    [16] LIN S S,LI C B,XU F Q,et al.The strategy research on electrical equipment condition-based maintenance based on cloud model and grey D-S evidence theory[J].Intelligent Decision Technologies,2018,12(3):283-292.
    [17] 陈皓勇,蔡伟钧,陈健润.能量与信息融合的电力物联网技术[J].电力系统保护与控制,2021,49(22):8-17.CHEN Haoyong,CAI Weijun,CHEN Jianrun.Power Internet of Things technology with energy and information fusion[J].Power System Protection and Control,2021,49(22):8-17.
    [18] 王玉伟,余俊龙,彭平,等.基于多模型融合的变压器故障在线检测方法[J].高电压技术,2023,49(8):3415-3424.WANG Yuwei,YU Junlong,PENG Ping,et al.Online detection method for transformer faults based on multi-model fusion[J].High Voltage Engineering,2023,49(8):3415-3424.
    [19] 邹阳,俞豪奕,金涛.融合模糊K近邻及证据理论的变压器油纸绝缘状态评估方法[J].电力系统保护与控制,2023,51(14):55-63.ZOU Yang,YU Haoyi,JIN Tao.Evaluation method of the oil-paper insulation condition of a transformer based on fuzzy K nearest neighbor and evidence theory[J].Power System Protection and Control,2023,51(14):55-63.
    [20] 李明节,刘宇,舒治淮,等.中国变电站二次系统技术发展趋势分析[J].电网技术,2024,48(1):1-12.LI Mingjie,LIU Yu,SHU Zhihuai,et al.Development trend of secondary system technology in China’s substations[J].Power System Technology,2024,48(1):1-12.
    [21] 钱小毅,孙天贺,姜兴宇,等.基于动态邻域指标重构的风电机组故障检测方法[J].太阳能学报,2024,45(9):557-563.QIAN Xiaoyi,SUN Tianhe,JIANG Xingyu,et al.Wind turbine fault detection method based on dynamic neighborhood index reconstruction[J].Acta Energiae Solaris Sinica,2024,45(9):557-563.
    [22] 郝如海,智勇,祁莹,等.基于熵权法的新能源高渗透率送端电网风险模糊综合评价[J].电力科学与技术学报,2021,36(1):73-78.HAO Ruhai,ZHI Yong,QI Ying,et al.Fuzzy synthetic evaluation based on entropy method of high renewable energy penetration power grid at sending end[J].Journal of Electric Power Science and Technology,2021,36(1):73-78.
    [23] 石宜金,谭贵生,赵波,等.基于模糊综合评估模型与信息融合的电力变压器状态评估方法[J].电力系统保护与控制,2022,50(21):167-176.SHI Yijin,TAN Guisheng,ZHAO Bo,et al.Condition assessment method for power transformers based on fuzzy comprehensive evaluation and information fusion[J].Power System Protection and Control,2022,50(21):167-176.
    [24] 黄新波,吴明松,朱永灿,等.基于模糊数学的电缆线路风险评估模型研究[J].高压电器,2021,57(9):19-25.HUANG Xinbo,WU Mingsong,ZHU Yongcan,et al.Research on risk assessment model of cable line based on fuzzy mathematics[J].High Voltage Apparatus,2021,57(9):19-25.
    [25] 李平,洪思远,李海锋.XLPE电力电缆健康度的模糊灰色综合评价方法[J].机电工程技术,2012,41(1):20-24.LI Ping,HONG Siyuan,LI Haifeng.Study of XLPE power cables health state evaluation based on fuzzy grey theory[J].Mechanical & Electrical Engineering Technology,2012,41(1):20-24.
    [26] 李家豪,王青于,范玥霖,等.鲸鱼优化算法-双向长短期记忆神经网络用于断路器机械剩余寿命的预测研究[J].高电压技术,2024,50(1):250-262.LI Jiahao,WANG Qingyu,FAN Yuelin,et al.Research on whale optimization algorithm-bidirectional long-short-term memory neural network for prediction of machinery remaining useful life of circuit breaker[J].High Voltage Engineering,2024,50(1):250-262.
    [27] 林翔,方健,王红斌,等.基于重要参量和参数修正的配电网设备故障率计算方法[J].电测与仪表,2022,59(2):141-147.LIN Xiang,FANG Jian,WANG Hongbin,et al.Calculation method of equipment failure rate in distribution network based on important parameters and parameter correction [J].Electrical Measurement and Instrumentation,202,59(2):141-147.
    [28] 刘泽扬,荆朝霞,孙启星,等.基于系统动力学的发电容量充裕度机制分析[J].电力系统自动化,2022,46(14):109-118.LIU Zeyang,JING Zhaoxia,SUN Qixing,et al.Analysis on generation capacity adequacy mechanism based on system dynamics[J].Automation of Electric Power Systems,2022,46(14):109-118.
    [29] 彭生江,杨淑霞,袁铁江.面向风煤富集区域的风?氢?煤耦合系统演化发展系统动力学[J].高电压技术,2023,49(8):3478-3489.PENG Shengjiang,YANG Shuxia,YUAN Tiejiang.System dynamics of the evolutionary development of coupled wind-hydrogen-coal system for wind-coal enriched areas[J].High Voltage Engineering,2023,49(8):3478-3489.
    [30] 孙黎霞,王中一,戴洪,等.计及网络结构的配电网健康状态评估方法研究[J].电力系统保护与控制,2022,50(4):64-74.SUN Lixia,WANG Zhongyi,DAI Hong,et al.The health state assessment method of a smart distribution network considering network structure[J].Power System Protection and Control,2022,50(4):64-74.
    [31] 杨春波,陶青,张健,等.基于综合健康指数的设备状态评估[J].电力系统保护与控制,2019,47(10):104-109.YANG Chunbo,TAO Qing,ZHANG Jian,et al.Equipment status evaluation based on comprehensive health index[J].Power System Protection and Control,2019,47(10):104-109.
    [32] MA Z,SHANG Y W,YUAN H W,et al.Holistic performance evaluation framework:power distribution network health index[J].IET Generation,Transmission & Distribution,2017,11(9):2184-2193.
    [33] HUGHES D.Condition based risk management (CBRM)?enabling asset condition information to be central to corporate decision making[C]//18th International Conference and Exhibition on Electricity Distribution (CIRED 2005).Turin,Italy,2005.
    [34] 李二霞,亢超群,李玉凌,等.基于设备状态评价和电网损失风险的配电网检修计划优化模型[J].高电压技术,2018,44(11):3751-3759.LI Erxia,KANG Chaoqun,LI Yuling,et al.Optimization model of distribution network maintenance plan based on equipment condition evaluation and grid loss risk[J].High Voltage Engineering,2018,44(11):3751-3759.
    [35] 顾佳浩,淡淑恒.考虑HI理论和在线监测误差的配电网可靠性评估[J].电力系统及其自动化学报,2021,33(4):127-134.GU Jiahao,DAN Shuheng.Reliability evaluation on distribution network considering HI theory and online monitoring error[J].Proceedings of the CSU-EPSA,2021,33(4):127-134.
    [36] 甘国晓,耿光超,高波,等.考虑线路停运概率的电力系统连锁故障阻断控制[J].电网技术,2020,44(1):266-272.GAN Guoxiao,GENG Guangchao,GAO Bo,et al.Blocking control of power system cascading failures considering line outages probability[J].Power System Technology,2020,44(1):266-272.
    [37] 罗涌恒,姜飞,苏斌,等.基于设备安全边界的分布式能源站实时安全风险评估及应对策略[J].电网技术,2024,48(8):3307-3316.LUO Yongheng,JIANG Fei,SU Bin,et al.Real-time security risk assessment and response strategy for distributed energy stations based on equipment security boundary[J].Power System Technology,2024,48(8):3307-3316.
    [38] 张立石,梁得亮,刘桦,等.基于小波变换与逻辑斯蒂回归的混合式配电变压器故障辨识[J].电工技术学报,2021,36(增刊2):467-476.ZHANG Lishi,LIANG Deliang,LIU Hua,et al.Fault identification of hybrid distribution transformer based on wavelet transform and logistic regression[J].Transactions of China Electrotechnical Society,2021,36(Sup 2):467-476.
    [39] 陈彬,于继来.强台风环境下配电线路故障概率评估方法[J].中国电力,2019,52(5):89-95.CHEN Bin,YU Jilai.Outage probability evaluation of the distribution corridors under strong typhoon environment[J].Electric Power,2019,52(5):89-95.
    [40] 谢敬东,陆池鑫,鲁思薇,等.基于序关系?熵权法的电力市场风险评估[J].中国电力,2021,54(6):71-78.XIE Jingdong,LU Chixin,LU Siwei,et al.Electricity market risk evaluation based on order relation-entropy weight method[J].Electric Power,2021,54(6):71-78.
    [41] 王孟雅,陈震,潘尔顺.基于马尔科夫决策的冷贮备串联系统状态维修与备件联合优化[J].工业工程与管理,2022,27(6):14-23.WANG Mengya,CHEN Zhen,PAN Ershun.Joint optimization of condition-based maintenance and spare parts for cold standby series system considering Markov decision[J].Industrial Engineering and Management,2022,27(6):14-23.
    [42] 徐涛,李明贞,刘毅刚,等.基于韦布尔分布的无失效数据参数估计的高压电缆寿命评估[J].武汉大学学报(工学版),2017,50(2):233-238.XU Tao,LI Mingzhen,LIU Yigang,et al.High-voltage cable life assessment based on zero-failure data parameter estimation of Weibull distribution[J].Engineering Journal of Wuhan University,2017,50(2):233-238.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢敬东,石 全,关博文,等.考虑耦合影响的数智化电缆系统的系统动力学安全评估方法[J].电力科学与技术学报,2024,39(6):101-112,173.
XIE Jingdong, SHI Quan, GUAN Bowen, et al. Dynamics safety evaluation method for digitally intelligent cable systems considering coupling effects[J]. Journal of Electric Power Science and Technology,2024,39(6):101-112,173.

复制
分享
文章指标
  • 点击次数:41
  • 下载次数: 106
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-02-14
文章二维码