基于IGWO‑Seq2Seq的风电故障预测方法
作者:
作者单位:

(1.天合石油集团股份有限公司,黑龙江 牡丹江 157011;2.长沙理工大学电气与信息工程学院,湖南 长沙 410114)

通讯作者:

孙辰昊(1991—),男,博士,讲师,主要从事电力数据挖掘及应用、人工智能等方面的研究;E?mail:chenhaosun@csust.edu.cn

中图分类号:

TM614

基金项目:

湖南省自然科学基金联合基金(2024JJ9175)


Wind power fault prediction method based on IGWO‑Seq2Seq
Author:
Affiliation:

(1. Trisun Petroleum Group Co., Ltd., Mudanjiang 157011, China; 2. School of Electrical & Information Engineering, Changsha University of Science &Technology, Changsha 410114, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    风电机组在运行过程中面临各种故障风险,如何精准地诊断和预测故障,对于提升风电场的运行效率和保障系统安全具有重要意义。传统的故障诊断方法主要依赖于基于规则的模型或浅层机器学习算法,这些方法在处理复杂、非线性、时序性强的数据时常常表现出较低的精度和较差的泛化能力。为此,提出一种基于改进灰狼优化(improved grey wolf optimizer, IGWO)算法的编解码器(Seq2Seq)模型,用于风电机组故障诊断预测。模型通过注意力机制增强关键输入时刻的特征表达能力,并利用IGWO算法对超参数进行全局优化以提升模型的预测精度和泛化能力。与传统模型相比,该模型风电机组故障预测中具备高效性和可靠性,为风电场的智能化运行与维护提供技术支持。

    Abstract:

    Wind turbines face various fault risks during operation, making precise fault diagnosis and prediction crucial for improving wind farm operation efficiency and ensuring system safety. Traditional fault diagnosis methods primarily rely on rule-based models or shallow machine learning algorithms, which often exhibit low accuracy and poor generalization ability when dealing with complex, nonlinear, and strongly time-dependent data. To address these challenges, this paper proposes an encoder-decoder (Seq2Seq) model based on an improved grey wolf optimizer (IGWO) for fault diagnosis and prediction of wind turbines. The model enhances the feature expression of key input moments through an attention mechanism and leverages IGWO to perform global optimization of hyperparameters, improving both prediction accuracy and generalization ability. Compared with traditional models, this approach demonstrates high efficiency and reliability in wind turbine fault prediction, providing technical support for the intelligent operation and maintenance of wind farms.

    参考文献
    相似文献
    引证文献
引用本文

徐楚琦,孙辰昊,詹明宇,等.基于IGWO‑Seq2Seq的风电故障预测方法[J].电力科学与技术学报,2024,39(6):203-211.
XU Chuqi, SUN Chenhao, ZHAN Mingyu, et al. Wind power fault prediction method based on IGWO‑Seq2Seq[J]. Journal of Electric Power Science and Technology,2024,39(6):203-211.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-02-14
文章二维码