基于IGWO‑Seq2Seq的风电故障预测方法
作者:
作者单位:

(1.天合石油集团股份有限公司,黑龙江 牡丹江 157011;2.长沙理工大学电气与信息工程学院,湖南 长沙 410114)

通讯作者:

孙辰昊(1991—),男,博士,讲师,主要从事电力数据挖掘及应用、人工智能等方面的研究;E?mail:chenhaosun@csust.edu.cn

中图分类号:

TM614

基金项目:

湖南省自然科学基金联合基金(2024JJ9175)


Wind power fault prediction method based on IGWO‑Seq2Seq
Author:
Affiliation:

(1. Trisun Petroleum Group Co., Ltd., Mudanjiang 157011, China; 2. School of Electrical & Information Engineering, Changsha University of Science &Technology, Changsha 410114, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    风电机组在运行过程中面临各种故障风险,如何精准地诊断和预测故障,对于提升风电场的运行效率和保障系统安全具有重要意义。传统的故障诊断方法主要依赖于基于规则的模型或浅层机器学习算法,这些方法在处理复杂、非线性、时序性强的数据时常常表现出较低的精度和较差的泛化能力。为此,提出一种基于改进灰狼优化(improved grey wolf optimizer, IGWO)算法的编解码器(Seq2Seq)模型,用于风电机组故障诊断预测。模型通过注意力机制增强关键输入时刻的特征表达能力,并利用IGWO算法对超参数进行全局优化以提升模型的预测精度和泛化能力。与传统模型相比,该模型风电机组故障预测中具备高效性和可靠性,为风电场的智能化运行与维护提供技术支持。

    Abstract:

    Wind turbines face various fault risks during operation, making precise fault diagnosis and prediction crucial for improving wind farm operation efficiency and ensuring system safety. Traditional fault diagnosis methods primarily rely on rule-based models or shallow machine learning algorithms, which often exhibit low accuracy and poor generalization ability when dealing with complex, nonlinear, and strongly time-dependent data. To address these challenges, this paper proposes an encoder-decoder (Seq2Seq) model based on an improved grey wolf optimizer (IGWO) for fault diagnosis and prediction of wind turbines. The model enhances the feature expression of key input moments through an attention mechanism and leverages IGWO to perform global optimization of hyperparameters, improving both prediction accuracy and generalization ability. Compared with traditional models, this approach demonstrates high efficiency and reliability in wind turbine fault prediction, providing technical support for the intelligent operation and maintenance of wind farms.

    参考文献
    [1] 谭显东,刘俊,徐志成,等.“双碳” 目标下“十四五” 电力供需形势[J].中国电力,2021,54(5):1-6. TAN Xiandong,LIU Jun,XU Zhicheng,et al.Power supply and demand balance during the 14th Five-Year Plan period under the goal of carbon emission peak and carbon neutrality[J].Electric Power,2021,54(5):1-6.
    [2] 阮佳琪,孙浩.浅谈海上风电与智能制造在“双碳” 目标下的发展结合点[J].水电与新能源,2024,38(10):47-50. RUAN Jiaqi,SUN Hao.On the development integration point of offshore wind power and intelligent manufacturing considering the carbon peaking and carbon neutrality goals[J].Hydropower and New Energy,2024,38(10):47-50.
    [3] 袁晓冬,曾飞,缪惠宇,等.电热氢综合能源系统建模及容量规划研究[J].高压电器,2024,60(7):34-47. YUAN Xiaodong,ZENG Fei,MIU Huiyu,et al.Study on modelling and capacity planning of electric-thermal-hydrogen integrated energy systems[J].High Voltage Apparatus,2024,60(7):34-47.
    [4] 巫春平,赵鑫.“双碳”背景下广西陆上风电开发现状及发展前景展望[J].红水河,2023,42(3):55-59. WU Chunping,ZHAO Xin.Current status and development prospects of onshore wind power development in guangxi under the "Dual Carbon" background [J].Red River,2023,42(3):55-59.
    [5] 何坤敏.基于信息融合的风电机组齿轮箱故障诊断方法研究[D].贵阳:贵州大学,2023. HE Kunmin.Research on fault diagnosis method of wind turbine gearbox based on information fusion[D].Guiyang:Guizhou University,2023.
    [6] 郭慧军.基于深度学习的风电机组状态监测与健康评价[D].呼和浩特:内蒙古工业大学,2021. GUO Huijun.Condition monitoring and health evaluation of wind turbine based on deep learning[D].Hohhot:Inner Mongolia University of Tehchnology,2021.
    [7] 张利慧,李殊瑶,李晓波,等.基于时频域特征参数的风电机组滚动轴承故障诊断方法及应用[J].内蒙古电力技术,2024,42(3):13-19. ZHANG Lihui,LI Shuyao,LI Xiaobo,et al.Diagnostic method of wind turbine rolling bearing failure based on time frequency domain characteristic parameters and its application[J].Inner Mongolia Electric Power,2024,42(3):13-19.
    [8] 连莎莎.基于模型的风电机组变桨距系统故障预测的研究[D].北京:华北电力大学,2015. LIAN Shasha.Research on model-based fault prediction of pitch system for wind turbines[D].Beijing:North China Electric Power University,2015.
    [9] 张小田,鄢盛腾,周雪青,等.基于状态监测的风电机组主轴承早期故障预测方法[J].广东电力,2012,25(11):6-9+50. ZHANG Xiaotian,YAN Shengteng,ZHOU Xueqing,et al.Early stage failure forecast method for main bearing of wind turbine based on state monitoring[J].Guangdong Electric Power,2012,25(11):6-9+50.
    [10] 王朋飞,刘长良,徐健,等.基于图注意力和时间卷积网络的风电齿轮箱故障预警方法[J].电子测量与仪器学报,2023,37(8):204-213. WANG Pengfei,LIU Changliang,XU Jian,et al.Wind turbine gearbox fault warning method based on graph attention and temporal convolutional networks[J].Journal of Electronic Measurement and Instrumentation,2023,37(8):204-213.
    [11] 于浩,张东,方文墨,等.基于关联分析的生成式对抗神经网络的风电机组故障诊断研究[J].沈阳工程学院学报(自然科学版),2022,18(4):1-6. YU Hao,ZHANG Dong,FANG Wenmo,et al.Research on wind turbine fault diagnosis based on generating adversarial neural network based on correlation analysis[J].Journal of Shenyang Institute of Engineering (Natural Science Edition),2022,18(4):1-6.
    [12] 程江洲,冯馨以,冯梦婷,等.计及气象因素的风电机组故障诊断与风险预测[J].科学技术与工程,2022,22(22):9645-9651. CHENG Jiangzhou,FENG Xinyi,FENG Mengting,et al.Wind turbine fault diagnosis and risk prediction considering meteorological factors[J].Science Technology and Engineering,2022,22(22):9645-9651.
    [13] 陈亚楠,胡凯凯,陈刚,等.基于机器学习的风电机组齿轮箱故障预警[J].控制与信息技术,2021(5):108-112. CHEN Yanan,HU Kaikai,CHEN Gang,et al.Fault early warning of wind turbine gearbox based on machine learning[J].Control and Information Technology,2021(5):108-112.
    [14] 尹子康,林忠伟,吕广华,等.基于数据驱动的风电机组变桨系统故障诊断与健康状态预测研究[J].东北电力大学学报,20,43(5):1-11+17. YIN Zikang,LIN Zhongwei,LYU Guanghua,et al.Research on fault diagnosis and health state prediction of wind turbine variable pitch system based on data drive[J].Journal of Northeast Electric Power University,20,43(5):1-11+17.
    [15] 朱彦民,李忠虎,王金明,等.基于Transformer的风电机组故障预测[J].电子测量技术,2024,47(13):45-52. ZHU Yanmin,LI Zhonghu,WANG Jinming,et al.Transformer based fault prediction for wind turbines[J].Electronic Measurement Technology,2024,47(13):45-52.
    [16] 成志伟,王晓丹,李雪娇,等.基于大数据分析技术的风电机组齿轮箱故障预警[J].内燃机与配件,2023(4):73-75. CHENG Zhiwei,WANG Xiaodan,LI Xuejiao,et al.Wind turbine gearbox fault warning based on big data analysis technology [J].Internal Combustion Engines and Accessories,2023 (4):73-75.
    [17] 李刚,张曦月,杨维.基于改进Seq2Seq模型的电力智能客服系统设计方法研究[J].电力信息与通信技术,2023,21(8):68-74. LI Gang,ZHANG Xiyue,YANG Wei.Research on design method of electric power smart customer service system based on improved Seq2Seq model[J].Electric Power Information and Communication Technology,2023,21(8):68-74.
    [18] 杨秀,胡钟毓,田英杰,等.基于Attention机制的CNN-GRU配网线路重过载短期预测方法[J].电力科学与技术学报,2023,38(1):201-209. YANG Xiu,HU Zhongyu,TIAN Yingjie,et al.Short-term heavy overload forecasting method of distribution net line based on CNN-GRU with Attention mechanism[J].Journal of Electric Power Science and Technology,2023,38(1):201-209.
    [19] 杨楠,贾俊杰,邢超,等.基于E-Seq2Seq技术的数据驱动型机组组合智能决策方法[J].中国电机工程学报,2020,40(23):7587-7600. YANG Nan,JIA Junjie,XING Chao,et al.Data-driven intelligent decision-making method for unit commitment based on E-Seq2Seq technology[J].Proceedings of the CSEE,2020,40(23):7587-7600.
    [20] 牧慧琴.车联网通信中基于深度学习的信道估计技术研究[D].南昌:华东交通大学,2023. MU Huiqin.Research on channel estimation technology based on deep learning in vehicle networking communication[D].Nanchang:East China Jiaotong University,2023.
    [21] 刘振涛.基于深度学习方法的中文分词和词性标注研究[D].天津:中国民航大学,2020. LIU Zhentao.Research on Chinese word segmentation and part-of-speech tagging based on deep learning methods[D].Tianjin:Civil Aviation University of China,2020.
    [22] 林玲,陈福集,谢加良,等.基于改进灰狼优化支持向量回归的网络舆情预测[J].系统工程理论与实践,2022,42(2):487-498. LIN Ling,CHEN Fuji,XIE Jialiang,ea al.Prediction of network public opinion based on improved grey wolf optimized support vector machine regression[J].Systems Engineering —Theory & Practice,2022,42(2):487-498.
    [23] 李文哲,李开明,岳屹峰,等.基于时空注意力-Seq2Seq网络的ISAR包络对齐方法[J].信号处理,2024,40(9):1659-1673. LI Wenzhe,LI Kaiming,YUE Yifeng,et al.ISAR range alignment based on a spatiotemporal attention-Seq2Seq network[J].Journal of Signal Processing,2024,40(9):1659-1673.
    [24] 朱咏明,何龙,王清彬,等.基于灰狼优化算法的PMU配置模型[J].电力设备管理,2024(18):202-204. ZHU Yongming,HE Long,WANG Qingbin,et al.PMU configuration model based on grey wolf optimization algorithm[J].Electric Power Equipment Management,2024(18):202-204.
    [25] 任振宇,张师.基于灰狼算法的电力系统无功优化控制[J].黑龙江电力,2021,43(1):64-67. REN Zhenyu,ZHANG Shi.Reactive power optimization control in power system based on gray wolf algorithm[J].Heilongjiang Electric Power,2021,43(1):64-67.
    [26] 冯严冰,王洪亮.基于入侵杂草优化和灰狼优化算法的混合优化算法研究[J].信息技术与信息化,2024(9):67-70. FENG Yanbing,WANG Hongliang.Research on hybrid optimization algorithm based on invasive weed optimization and grey wolf optimization algorithm[J].Information Technology and Informatization,2024(9):67-70.
    [27] 侯勇严,杨澳,郭文强,等.基于灰狼算法优化的神经网络短期发电量预测[J].陕西科技大学学报,2022,40(4):171-177. HOU Yongyan,YANG Ao,GUO Wenqiang,et al.Short-term power generation prediction using grey wolf optimization algorithm and neural network[J].Journal of Shaanxi University of Science and Technology,2022,40(4):171-177.
    [28] 刘晖,朱德康,许凌杰,等.基于改进灰狼算法优化支持向量机的边坡位移预测[J].自动化技术与应用,2024,43(9):30-33+171. LIU Hui,ZHU Dekang,XU Lingjie,et al.Slope displacement prediction based on improved grey wolf algorithm and support vector machine[J].Techniques of Automation and Applications,2024,43(9):30-33+171.
    相似文献
    引证文献
引用本文

徐楚琦,孙辰昊,詹明宇,等.基于IGWO‑Seq2Seq的风电故障预测方法[J].电力科学与技术学报,2024,39(6):203-211.
XU Chuqi, SUN Chenhao, ZHAN Mingyu, et al. Wind power fault prediction method based on IGWO‑Seq2Seq[J]. Journal of Electric Power Science and Technology,2024,39(6):203-211.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-02-14
文章二维码