基于需求侧响应的不同时间尺度动态分时电价时段优化研究
作者:
作者单位:

(华北电力大学经济与管理学院,北京 102206)

通讯作者:

曹婧祎(1998—),女,硕士研究生,主要从事电力技术经济与管理、电力市场、能源经济等研究;E?mail:2517903912@qq.com

中图分类号:

TM73;F426.61

基金项目:

国家自然科学基金(71973043)


Time slot optimization of dynamic time‑of‑use tariffs under different time scales based on demand side response
Author:
Affiliation:

(School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    分时电价政策多以固定时段划分方案来执行,但随着供给侧可再生能源的大量接入,需求侧广义负荷的柔性逐渐增强,供需关系呈现出动态变化。因此,为了研究不同时间尺度下的动态分时电价峰谷时段优化问题,本文在综合考虑新能源大比例并网和需求侧响应的基础上,采用改进的模糊C均值(fuzzy?C means,FCM)聚类算法构建峰谷时段划分模型。该模型对不同时间尺度下的净负荷日变化曲线进行聚类分析,以确定最优的时段划分结果。基于辽宁省2021年4月—2022年3月的净负荷数据进行的算例分析结果表明,新能源具有反调峰特性,存在引起净负荷曲线的峰谷差增大的问题。同时,用户对于分时电价政策时段划分的响应具有滞后性和时效性,因此,建议每隔3~4个月动态调整峰谷分时电价政策的时段划分,以更好地挖掘用户需求侧的响应潜力,促进削峰填谷;但如果峰谷时段的调整过于频繁,用户可能会难以及时调整其用电行为进行响应。

    Abstract:

    The time-of-use tariff policy is mostly implemented with a fixed time slot delineation scheme, but with the large access of renewable energy on the supply side and the enhanced flexibility of broad load on the demand side, the relationship between supply and demand shows dynamic changes. Therefore, in order to study the optimization of peak and valley time slots of dynamic time-of-use tariffs under different time scales, this paper adopts the improved fuzzy-C means (FCM) clustering algorithm to construct peak and valley time slot delineation model based on the comprehensive consideration of the large proportion of renewable energy connected to the networks and the demand-side response. The model determines the optimal time slot delineation results through the clustering analysis of the daily change curves of the net load under different time scales. According to the example analysis of Liaoning Province’s net load data from April 2021 to March 2022, renewable energy has anti-peaking characteristics, which causes the peak-to-valley difference of the net load curve to increase, and users’ response to the time slot delineation of the time-of-use tariff policy has a lag and timeliness. Therefore, it is recommended to dynamically adjust the time slot delineation of the time-of-peak tariff policy every 3?4 months to better tap the potential of users’ demand side response and promote peak shaving and valley filling. However, if the peak and valley time slots are frequently adjusted, it will be difficult for users to adjust their electricity consumption in time to respond.

    参考文献
    相似文献
    引证文献
引用本文

曹婧祎,何永秀,周静涵,等.基于需求侧响应的不同时间尺度动态分时电价时段优化研究[J].电力科学与技术学报,2024,39(6):242-250,268.
CAO Jingyi, HE Yongxiu, ZHOU Jinghan, et al. Time slot optimization of dynamic time‑of‑use tariffs under different time scales based on demand side response[J]. Journal of Electric Power Science and Technology,2024,39(6):242-250,268.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-02-14
文章二维码