大规模风电场协调控制架构及算法综述
作者:
作者单位:

(1.哈尔滨工业大学(威海) 新能源学院,山东 威海 264200;2.国网浙江省电力有限公司杭州市临安区供电公司,浙江 杭州 311300;3.华中科技大学电气与电子工程学院(强电磁工程与新技术国家重点实验室),湖北 武汉 430074;4.华中科技大学电气与电子工程学院(电力安全与高效湖北省重点实验室),湖北 武汉 430074)

通讯作者:

韩 佶(1993—),男,博士,副教授,主要从事新能源控制、电力系统运行、人工智能应用等方面的研究;E?mail:hanji@hit.edu.cn

中图分类号:

TM863

基金项目:

山东省自然科学基金青年基金(ZR2023QE315)


Review of coordinated control architectures and algorithms for large‑scale wind farms
Author:
Affiliation:

(1.College of New Energy, Harbin Institute of Technology, Weihai 264200, China; 2.Lin’an Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311300, China; 3.State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 4.Hubei Key Laboratory of Electric Power Security and High Efficiency, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [135]
  • | | | |
  • 文章评论
    摘要:

    随着风电并网规模的增长,电力系统稳定性面临更多挑战,迫切需要高效的风电集群协调控制技术。首先分析频率控制、功率平滑控制、电压控制、最大功率输出控制等风电集群协调场景的基本原理;在此基础上,分析分散式、集中式和分布式风电集群协调控制框架的性能,探讨新型控制框架的技术特点和优势;接下来,综述风电集群协调控制实现算法,包括模糊算法、一致性算法、模型预测控制、交替方向乘子法、人工智能算法、群智能算法等,讨论不同算法的适用场景;最后,展望风电集群协调控制技术的发展趋势,指出跨学科融合的实现新思路。

    Abstract:

    With the growth of wind power grid-connected scale, power system stability is facing more challenges, necessitating efficient coordinated control techniques for wind power clusters. The basic principles of coordination in wind power cluster scenarios are analyzed, such as frequency control, power smoothing control, voltage control, and maximum power output control. On this basis, the coordinated control framework performance of decentralized, centralized, and distributed wind power clusters is analyzed, and the technical characteristics and advantages of new control frameworks are explored. Next, algorithms for coordinated control of wind power clusters are reviewed, including the fuzzy algorithm, consistency algorithm, model predictive control, alternating direction multiplier method, artificial intelligence algorithm, and swarm intelligence algorithm, and the applicable scenarios of different algorithms are discussed. Finally, the development trend of coordinated control techniques for wind power clusters is projected, and new insights into achieving interdisciplinary integration are provided.

    参考文献
    [1] 陈汝斯,李大虎,周泓宇,等.基于梯次启动与优化算法的多集群风机最优调频方法[J].电力建设,2023,44(11):54-63. CHEN Rusi,LI Dahu,ZHOU Hongyu,et al.Optimal frequency regulation in multi-cluster wind turbines using a step start-up and optimization algorithm[J].Electric Power Construction,2023,44(11):54-63.
    [2] 新华网.我国风电发展或将进入“倍速”阶段[EB/OL].http://www.xinhuanet.com/energy/2020-10/26/c_1126656312.htm,2020-10-26. Xinhua News Agency.China's wind power development may enter a "high-speed" phase[EB/OL].http://www.xinhuanet.com/energy/2020-10/26/c_1126656312.htm,2020-10-26.
    [3] ATTYA A B,DOMINGUEZ-GARCIA J L,ANAYA-LARA O.A review on frequency support provision by wind power plants:Current and future challenges[J].Renewable and Sustainable Energy Reviews,2018,81:2071-2087.
    [4] 年珩,程鹏,贺益康.故障电网下双馈风电系统运行技术研究综述[J].中国电机工程学报,2015,35(16):4184-4197. NIAN Heng,CHENG Peng,HE Yikang.Review on operation techniques for DFIG-based wind energy conversion systems under network faults[J].Proceedings of the CSEE,2015,35(16):4184-4197.
    [5] 李辉,胡姚刚,李洋,等.大功率并网风电机组状态监测与故障诊断研究综述[J].电力自动化设备,2016,36(1):6-16. LI Hui,HU Yaogang,LI Yang,et al.Overview of condition monitoring and fault diagnosis for grid-connected high-power wind turbine unit[J].Electric Power Automation Equipment,2016,36(1):6-16.
    [6] 王伟胜,张冲,何国庆,等.大规模风电场并网系统次同步振荡研究综述[J].电网技术,2017,41(4):1050-1060. WANG Weisheng,ZHANG Chong,HE Guoqing,et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J].Power System Technology,2017,41(4):1050-1060.
    [7] 艾斯卡尔,朱永利,唐斌伟.风力发电机组故障穿越问题综述[J].电力系统保护与控制,2013,41(19):147-153. AI Sikaer,ZHU Yongli,TANG Binwei.Summarizing for fault ride through characteristics of wind turbines[J].Power System Protection and Control,2013,41(19):147-153.
    [8] 徐晓宾,李凤婷.不对称故障下直驱永磁风电机组运行控制方式综述[J].电力电容器与无功补偿,2016,37(1):96-102. XU Xiaobin,LI Fengting.Review on operation control mode for direct drive permanent magnet wind turbine under asymmetrical fault[J].Power Capacitor & Reactive Power Compensation,2016,37(1):96-102.
    [9] 李少林,王伟胜,张兴,等.风力发电对系统频率影响及虚拟惯量综合控制[J].电力系统自动化,2019,43(15):64-70. LI Shaolin,WANG Weisheng,ZHANG Xing,et al.Impact of wind power on power system frequency and combined virtual inertia control[J].Automation of Electric Power Systems,2019,43(15):64-70.
    [10] 竺炜,杨子琦,祁俊辉,等.大型风电腰荷接入的主网安全调度方法[J].电力科学与技术学报,2024,39(2):1-8. ZHU Wei,YANG Ziqi,QI Junhui,et al.Secure scheduling method of main network for large-scale wind power waist-load access[J].Journal of Electric Power Science and Technology,2024,39(2):1-8.
    [11] 池喜洋,竺炜,刘长富,等.含大型风电场的电网安全经济优化调度[J].电力科学与技术学报,2018,33(1):125-131. CHI Xiyang,ZHU Wei,LIU Changfu,et al.Security and economic optimization dispatch for power grid integrating large-scale wind farm[J].Journal of Electric Power Science and Technology,2018,33(1):125-131.
    [12] 李自明,姚秀萍,王海云,等.不同风电机组并网对电力系统暂态电压稳定性的影响[J].电力科学与技术学报,2016,31(2):16-21. LI Ziming,YAO Xiuping,WANG Haiyun,et al.Influence of different wind turbine generators integration to power system transient voltage stability[J].Journal of Electric Power Science and Technology,2016,31(2):16-21.
    [13] MOHAMMAD S N,DAS N K,ROY S.Power converters and control of wind energy conversion systems[C]//2013 International Conference on Electrical Information and Communication Technology (EICT).Khulna.IEEE,2014:1-7.
    [14] AHMED S D,AL-ISMAIL F S M,SHAFIULLAH M,et al.Grid integration challenges of wind energy:a review[J].IEEE Access,2020,8:10857-10878.
    [15] LIU Y H,CHI Y N,WANG W S,et al.Impacts of large scale wind power integration on power system[C]//2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT).Weihai,China.IEEE,2011:1301-1305.
    [16] VERMEER L J,S?RENSEN J N,CRESPO A.Wind turbine wake aerodynamics[J].Progress in Aerospace Sciences,2003,39(6/7):467-510.
    [17] 李从善,甄子凯,和萍,等.风电与多端柔性直流输电系统自适应分频协调控制策略研究[J].电力科学与技术学报,2024,39(1):65-73+92. LI Congshan,ZHEN Zikai,HE Ping,et al.Research on adaptive frequency division coordinated control strategy for wind power and multi terminal flexible HVDC transmission system[J].Journal of Electric Power Science and Technology,2024,39(1):65-73+92.
    [18] TARNOWSKI G C,KJ?R P C,DALSGAARD S,et al.Regulation and frequency response service capability of modern wind power plants[C]//IEEE PES General Meeting.Minneapolis,MN,USA.IEEE,2010:1-8.
    [19] MORREN J,DE HAAN S W H,KLING W L,et al.Wind turbines emulating inertia and supporting primary frequency control[J].IEEE Transactions on Power Systems,2006,21(1):433-434.
    [20] 丁磊,尹善耀,王同晓,等.考虑惯性调频的双馈风电机组主动转速保护控制策略[J].电力系统自动化,2015,39(24):29-34+95. DING Lei,YIN Shanyao,WANG Tongxiao,et al.Active rotor speed protection strategy for DFIG-based wind turbines with inertia control[J].Automation of Electric Power Systems,2015,39(24):29-34+95.
    [21] 潘文霞,全锐,王飞.基于双馈风电机组的变下垂系数控制策略[J].电力系统自动化,2015,39(11):126-131+186. PAN Wenxia,QUAN Rui,WANG Fei.A variable droop control strategy for doubly-fed induction generators[J].Automation of Electric Power Systems,2015,39(11):126-131+186.
    [22] VIDYANANDAN K V,SENROY N.Primary frequency regulation by deloaded wind turbines using variable droop[J].IEEE Transactions on Power Systems,2013,28(2):837-846.
    [23] 侍乔明,王刚,马伟明,等.直驱永磁风电机组虚拟惯量控制的实验方法研究[J].中国电机工程学报,2015,35(8):2033-2042. SHI Qiaoming,WANG Gang,MA Weiming,et al.An experimental study method of D-PMSG with virtual inertia control[J].Proceedings of the CSEE,2015,35(8):2033-2042.
    [24] 陈宇航,王刚,侍乔明,等.一种新型风电场虚拟惯量协同控制策略[J].电力系统自动化,2015,39(5):27-33. CHEN Yuhang,WANG Gang,SHI Qiaoming,et al.A new coordinated virtual inertia control strategy for wind farms[J].Automation of Electric Power Systems,2015,39(5):27-33.
    [25] LEE J,MULJADI E,SRENSEN P,et al.Releasable kinetic energy-based inertial control of a DFIG wind power plant[J].IEEE Transactions on Sustainable Energy,2015,7(1):279-288.
    [26] 高晖胜,訾鹏,黄林彬,等.能量约束下电力电子并网装备的最优频率控制[J].电力系统自动化,2020,44(17):9-18. GAO Huisheng,ZI Peng,HUANG Linbin,et al.Optimal frequency control of grid-connected power electronic devices with energy constraints[J].Automation of Electric Power Systems,2020,44(17):9-18.
    [27] 边晓燕,张菁娴,丁炀,等.基于DFIG虚拟惯量的微电网双维自适应动态频率优化控制[J].高电压技术,2020,46(5):1476-1485. BIAN Xiaoyan,ZHANG Jingxian,DING Yang,et al.Double layer adaptive dynamic frequency optimization control of microgrid based on DFIG virtual inertia[J].High Voltage Engineering,2020,46(5):1476-1485.
    [28] ZHANG W,FANG K L.Controlling active power of wind farms to participate in load frequency control of power systems[J].IET Generation,Transmission & Distribution,2017,11(9):2194-2203.
    [29] 乔颖,郭晓茜,鲁宗相,等.考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J].电网技术,2020,44(3):807-815. QIAO Ying,GUO Xiaoqian,LU Zongxiang,et al.Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J].Power System Technology,2020,44(3):807-815.
    [30] 张雯欣,吴琛,黄伟,等.考虑频率二次跌落的系统频率特征评估及风电调频参数整定[J].电力系统自动化,2022,46(8):11-19. ZHANG Wenxin,WU Chen,HUANG Wei,et al.Evaluation of system frequency characteristic and parameter setting of frequency regulation for wind power considering secondary frequency drop[J].Automation of Electric Power Systems,2022,46(8):11-19.
    [31] 姚雅涵,姚伟,熊永新,等.经多端直流并网的海上风电场调频协同控制和风机转速恢复策略[J].高电压技术,2021,47(10):3537-3548. YAO Yahan,YAO Wei,XIONG Yongxin,et al.Coordinated frequency support and wind turbine preset restoration scheme of VSC-MTDC integrated offshore wind farms[J].High Voltage Engineering,2021,47(10):3537-3548.
    [32] LIU K C,QU Y B,KIM H M,et al.Avoiding frequency second dip in power unreserved control during wind power rotational speed recovery[J].IEEE Transactions on Power Systems,2018,33(3):3097-3106.
    [33] 唐玉烽,杨苹,杨义.考虑频率二次跌落的风电机组频率响应控制策略[J].电力系统自动化,2023,47(9):166-174. TANG Yufeng,YANG Ping,YANG Yi.Frequency response control strategy of wind turbines considering frequency secondary drop[J].Automation of Electric Power Systems,2023,47(9):166-174.
    [34] 陶玉昆,杨飞飞,和萍,等.考虑频率二次跌落和转速恢复的风电机组柔性频率响应策略[J].电力系统自动化,2024,48(13):60-68. TAO Yukun,YANG Feifei,HE Ping,et al.Flexible frequency response strategy for wind turbines considering secondary frequency drop and rotational speed recovery[J].Automation of Electric Power Systems,2024,48(13):60-68.
    [35] 劳焕景,张黎,赵彤,等.考虑分组控制和有序恢复的风电调频策略[J].电力系统自动化,2020,44(16):114-120. LAO Huanjing,ZHANG Li,ZHAO Tong,et al.Frequency regulation strategy for wind power considering grouping control and orderly recovery[J].Automation of Electric Power Systems,2020,44(16):114-120.
    [36] GHOSH S,KAMALASADAN S,SENROY N,et al.Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application[J].IEEE Transactions on Power Systems,2016,31(3):1861-1871.
    [37] 丁磊,尹善耀,王同晓,等.结合超速备用和模拟惯性的双馈风机频率控制策略[J].电网技术,2015,39(9):2385-2391. DING Lei,YIN Shanyao,WANG Tongxiao,et al.Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J].Power System Technology,2015,39(9):2385-2391.
    [38] 张昭遂,孙元章,李国杰,等.超速与变桨协调的双馈风电机组频率控制[J].电力系统自动化,2011,35(17):20-25+43. ZHANG Zhaosui,SUN Yuanzhang,LI Guojie,et al.Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J].Automation of Electric Power Systems,2011,35(17):20-25+43.
    [39] 范冠男,刘吉臻,孟洪民,等.电网限负荷条件下风电场一次调频策略[J].电网技术,2016,40(7):2030-2037. FAN Guannan,LIU Jizhen,MENG Hongmin,et al.Primary frequency control strategy for wind farms under output-restricted condition[J].Power System Technology,2016,40(7):2030-2037.
    [40] 王鑫,李慧,叶林,等.考虑风速波动特性的VMD-GRU短期风电功率预测[J].电力科学与技术学报,2021,36(4):20-28. WANG Xin,LI Hui,YE Lin,et al.VMD-GRU based short-term wind power forecast considering wind speed fluctuation characteristics[J].Journal of Electric Power Science and Technology,2021,36(4):20-28.
    [41] ABEDINI A,NASIRI A.Output power smoothing for wind turbine permanent magnet synchronous generators using rotor inertia[J].Electric Power Components and Systems,2008,37(1):1-19.
    [42] LUU T,ABEDINI A,NASIRI A.Power smoothing of doubly fed induction generator wind turbines[C]//2008 34th Annual Conference of IEEE Industrial Electronics.Orlando,FL,USA.IEEE,2008:2365-2370.
    [43] ABEDINI A,LUU T,NASIRI A.A novel speed control algorithm for PMSG wind turbines aimed at output power smoothing[C]//2008 Canadian Conference on Electrical and Computer Engineering.Niagara Falls,ON,Canada.IEEE,2008:1597-1600.
    [44] STEINBUCH M.Dynamic modelling and robust control of a wind energy conversion system[D].Delft:Delft University of Technology,1989.
    [45] 马瑞,李浩,吴震宇.考虑置信水平的混合储能平抑风电波动[J].电力科学与技术学报,2022,37(1):35-40. MA Rui,LI Hao,WU Zhenyu.Wind power fluctuations suppression with hybrid energy storage considering the confidence level[J].Journal of Electric Power Science and Technology,2022,37(1):35-40.
    [46] 周年光,谢欣涛,马俊杰,等.风电场配套储能的自适应虚拟惯性:阻尼控制[J].电力科学与技术学报,2024,39(3):150-158. ZHOU Nianguang,XIE Xintao,MA Junjie,et al.An adaptive virtual inertial damping control for wind farm integrated energy storage system[J].Journal of Electric Power Science and Technology,2024,39(3):150-158.
    [47] LI X J,LI N,JIA X C,et al.Fuzzy logic based smoothing control of wind/PV generation output fluctuations with battery energy storage system[C]//2011 International Conference on Electrical Machines and Systems.Beijing,China.IEEE,2011:1-5.
    [48] LI X J,HUI D,WU L,et al.Control strategy of battery state of charge for wind/battery hybrid power system[C]//2010 IEEE International Symposium on Industrial Electronics.Bari,Italy.IEEE,2010:2723-2726.
    [49] LI X J,HUI D,LAI X K,et al.Control strategy of wind power output by pitch angle control using fuzzy logic[C]//2010 IEEE International Symposium on Industrial Electronics.Bari,Italy.IEEE,2010:120-124.
    [50] ZHAO W C,WU S Y,WANG C L,et al.Hybrid energy storage control for smoothing wind power fluctuations considering energy storage output levels[C]//2024 3rd International Conference on Energy,Power and Electrical Technology (ICEPET).Chengdu,China.IEEE,2024:503-507.
    [51] LUO H R,ZHANG Q P,GAO B,et al.Coordinated control strategy and economic analysis of flywheel energy storage array for wind power suppression[C]//2023 IEEE 5th International Conference on Power,Intelligent Computing and Systems (ICPICS).Shenyang,China.IEEE,2023:1012-1019.
    [52] QIN L,SUN N,DONG H Y.Adaptive double Kalman filter method for smoothing wind power in multi-type energy storage system[J].Energies,2023,16(4):1856.
    [53] 刘皓明,唐俏俏,朱凌志,等.双馈型风电场参与电压无功调节的分层控制方案[J].电力系统保护与控制,2014,42(24):79-85. LIU Haoming,TANG Qiaoqiao,ZHU Lingzhi,et al.Hierarchical control strategy of voltage and reactive power for DFIG wind farm[J].Power System Protection and Control,2014,42(24):79-85.
    [54] 邵龙,苏皓轩,王慧敏.大规模风电并网时双馈风机无功出力研究[J].电力科学与工程,2013,29(9):18-23. SHAO Long,SU Haoxuan,WANG Huimin.Research of reactive power output of doubly-fed induction generator when large-scale wind power integration[J].Electric Power Science and Engineering,2013,29(9):18-23.
    [55] 郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82. LANG Yongqiang,ZHANG Xueguang,XU Dianguo,et al.Reactive power analysis and control of doubly fed induction generator wind farm[J].Proceedings of the CSEE,2007,27(9):77-82.
    [56] 贾俊川,刘晋,张一工.双馈风力发电系统的新型无功优化控制策略[J].中国电机工程学报,2010,30(30):87-92. JIA Junchuan,LIU Jin,ZHANG Yigong.Novel reactive power optimization control strategy for doubly fed induction wind power generation system[J].Proceedings of the CSEE,2010,30(30):87-92.
    [57] 王松,李庚银,周明.双馈风力发电机组无功调节机理及无功控制策略[J].中国电机工程学报,2014,34(16):2714-2720. WANG Song,LI Gengyin,ZHOU Ming.The reactive power adjusting mechanism & control strategy of doubly fed induction generator[J].Proceedings of the CSEE,2014,34(16):2714-2720.
    [58] 高阳.电网故障时双馈风力发电机无功电流分配及控制策略[J].电力科学与工程,2017,33(12):28-33. GAO Yang.Reactive current distribution and control strategy of doubly-fed induction generator in grid fault[J].Electric Power Science and Engineering,2017,33(12):28-33.
    [59] 李丽霞,姚兴佳,王晓东,等.双馈风电场新型无功优化分配策略研究[J].太阳能学报,2017,38(5):1397-1404. LI Lixia,YAO Xingjia,WANG Xiaodong,et al.An optimal reactive power dispatch strategy for interior-point method based wind farms[J].Acta Energiae Solaris Sinica,2017,38(5):1397-1404.
    [60] NILSSON K,IVANELL S,HANSEN K S,et al.Large-eddy simulations of the Lillgrund wind farm[J].Wind Energy,2015,18(3):449-467.
    [61] 肖石,吕应刚,唐浩,等.面向海上油田平台用能低碳化的风电海缆路由优化方法[J].电力科学与技术学报,2024,39(6):184-193+202. XIAO Shi,LYU Yinggang,TANG Hao,et al.Optimization method for wind power submarine cable routing for low carbon energy consumption of offshore oilfield platforms[J].Journal of Electric Power Science and Technology,2024,39(6):184-193+202.
    [62] LISSAMAN P B S.Energy effectiveness of arbitrary arrays of wind turbines[J].Journal of Energy,1979,3(6):323-328.
    [63] MANWELL J F,MCGOWAN J G,ROGERS A L.Wind Energy Explained[M].New York:Wiley,2002.
    [64] 韩兵,马杰.基于模型参考自适应的大型风电机组独立变桨控制方法[J].分布式能源,2021,6(5):26-32. HAN Bing,MA Jie.Individual pitch control of large wind turbine based on model reference adaptive[J].Distributed Energy,2021,6(5):26-32.
    [65] HOUCK D,COWEN E A.Power and flow analysis of axial induction control in an array of model-scale wind turbines[J].Energies,2022,15(15):5347.
    [66] ARCHER C L,VASEL-BE-HAGH A.Wake steering via yaw control in multi-turbine wind farms:Recommendations based on large-eddy simulation[J].Sustainable Energy Technologies and Assessments,2019,33:34-43.
    [67] YANG L,LIAO K P,MA Q W,et al.Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method[J].Renewable Energy,2023,218:119255.
    [68] 田尧,高超,刘亚.水平轴风力机偏航与俯仰尾流特性[J].空气动力学学报,2023,41(11):80-93. TIAN Yao,GAO Chao,LIU Ya.Yaw and tilt wake characteristics of horizontal axis wind turbine[J].Acta Aerodynamica Sinica,2023,41(11):80-93.
    [69] SU K Y,BLISS D.A numerical study of tilt-based wake steering using a hybrid free-wake method[J].Wind Energy,2020,23(2):258-273.
    [70] LI Y J,XU Z,ZHANG J L,et al.Variable droop voltage control for wind farm[J].IEEE Transactions on Sustainable Energy,2018,9(1):491-493.
    [71] TIAN J,ZHOU D,SU C,et al.Reactive power dispatch method in wind farms to improve the lifetime of power converter considering wake effect[J].IEEE Transactions on Sustainable Energy,2017,8(2):477-487.
    [72] LIAO W,WU Q W,CUI H S,et al.Model predictive control based coordinated voltage control for offshore radial DC-connected wind farms[J].Journal of Modern Power Systems and Clean Energy,2023,11(1):280-289.
    [73] MA S K,GENG H,YANG G,et al.Clustering-based coordinated control of large-scale wind farm for power system frequency support[J].IEEE Transactions on Sustainable Energy,2018,9(4):1555-1564.
    [74] TAN H T,LI H,XIE X J,et al.Reactive-voltage coordinated control of offshore wind farm based on deep reinforcement learning[C]//2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES).Chengdu,China.IEEE,2021:407-412.
    [75] HUANG S,WU Q W,GUO Y F,et al.Distributed voltage control based on ADMM for large-scale wind farm cluster connected to VSC-HVDC[J].IEEE Transactions on Sustainable Energy,2020,11(2):584-594.
    [76] DONG Z,LI Z G,XU Y Q,et al.Surrogate-assisted cooperation control of network-connected doubly fed induction generator wind farm with maximized reactive power capacity[J].IEEE Transactions on Industrial Informatics,2022,18(1):197-206.
    [77] NGUYEN T T,KIM H M.Cluster-based predictive PCC voltage control of large-scale offshore wind farm[J].IEEE Access,2020,9:4630-4641.
    [78] GUO Y F,GAO H L,XING H,et al.Decentralized coordinated voltage control for VSC-HVDC connected wind farms based on ADMM[J].IEEE Transactions on Sustainable Energy,2019,10(2):800-810.
    [79] LI Z M,XU Z,XIE Y W,et al.Two-stage ADMM-based distributed optimal reactive power control method for wind farms considering wake effects[J].Global Energy Interconnection,2021,4(3):251-260.
    [80] LIN Z W,CHEN Z Y,QU C Z,et al.A hierarchical clustering-based optimization strategy for active power dispatch of large-scale wind farm[J].International Journal of Electrical Power & Energy Systems,2020,121:106155.
    [81] PENG H Z,HUANG S,WEI J,et al.Two-stage decentralized optimal voltage control in wind farms with hybrid ESSs[J].IEEE Transactions on Power Systems,2024,39(5):6552-6565.
    [82] 贾梦欣,张彬彬,陈超波,等.基于改进模糊AHP的风电场有功功率分配方法[J].能源与环保,2023,45(10):220-225+230. JIA Mengxin,ZHANG Binbin,CHEN Chaobo,et al.Active power dispatching method for wind farm based on improved fuzzy AHP[J].China Energy and Environmental Protection,2023,45(10):220-225+230.
    [83] 王玮,杨健,任国瑞,等.考虑模糊多目标优化的风电场无功电压分区控制[J].动力工程学报,2024,44(1):99-108. WANG Wei,YANG Jian,REN Guorui,et al.Zonal control of reactive power and voltage in wind farms considering fuzzy multi-objective optimization[J].Journal of Chinese Society of Power Engineering,2024,44(1):99-108.
    [84] 周丹,袁至,李骥,等.考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J].发电技术,2024,45(3):412-422. ZHOU Dan,YUAN Zhi,LI Ji,et al.An advanced fuzzy control strategy for hybrid energy storage systems considering smoothing of wind power fluctuations at future moments[J].Power Generation Technology,2024,45(3):412-422.
    [85] 纪坤华,王云,邓丽娜,等.提高双向调节能力的混合储能平滑风电控制策略[J].智慧电力,2024,52(3):55-62. JI Kunhua,WANG Yun,DENG Lina,et al.Hybrid energy storage wind power smoothing control strategy for improving bidirectional regulation ability[J].Smart Power,2024,52(3):55-62.
    [86] 冉华军,王新权,王灿,等.永磁直驱风电系统MPPT模糊改进线性自抗扰控制[J/OL].电测与仪表,1-9[2024-11-06].http://kns.cnki.net/kcms/detail/23.1202.TH.20240724.1044.002.html. RAN Huajun,WANG Xinquan,WANG Can,et al.MPPT control with fuzzy improved LADRC for permanent magnet direct drive wind power system [J/OL].Electrical Measurement & Instrumentation,1-9[2024- 11-06].http://kns.cnki.net/kcms/detail/23.1202.TH. 20240724.1044.002.html.
    [87] 王怡,张浩.基于模糊控制的风电机组变系数综合惯性控制策略[J].上海电力大学学报,2023,39(4):325-331. WANG Yi,ZHANG Hao.Variable coefficient integrated inertia control strategy of fan based on fuzzy control[J].Journal of Shanghai University of Electric Power,2023,39(4):325-331.
    [88] 朱瑛,王志聪,石琦,等.基于转子动能调节的风电输出功率平滑控制策略比较与改进[J].电力系统自动化,2023,47(22):157-165. ZHU Ying,WANG Zhicong,SHI Qi,et al.Comparison and improvement of power smoothing control strategies for wind power output based on kinetic energy adjustment for rotor[J].Automation of Electric Power Systems,2023,47(22):157-165.
    [89] 王海,吴劲芳,贾洪岩,等.基于模糊免疫算法和PLC的永磁直驱风电系统变桨增益控制方法[J].水力发电,2024,50(8):79-83. WANG Hai,WU Jinfang,JIA Hongyan,et al.A pitch gain control method for permanent magnet direct drive wind power system based on fuzzy immune algorithm and PLC[J].Water Power,2024,50(8):79-83.
    [90] 田刚领,武鸿鑫,李娟,等.风电场多功能储能电站功率分配策略[J].中国电力,2024,57(9):247-256. TIAN Gangling,WU Hongxin,LI Juan,et al.Power distribution strategy of multi-functional energy storage power station in wind farm[J].Electric Power,2024,57(9):247-256.
    [91] 王世奇,刘广忱,陈国伟,等.基于模糊卡尔曼滤波和改进滑模控制的风电场飞轮储能控制策略[J].可再生能源,2024,42(7):901-907. WANG Shiqi,LIU Guangchen,CHEN Guowei,et al.Control strategy of FESS in wind farms based on fuzzy Kalman filter and improved sliding mode control[J].Renewable Energy Resources,2024,42(7):901-907.
    [92] 蒋韬,刘红文,陆仕信,等.风电机组复杂工况下振动抑制模糊控制策略[J].控制与信息技术,2024(2):26-31. JIANG Tao,LIU Hongwen,LU Shixin,et al.Fuzzy control strategy for wind turbine vibration suppression under complicated operating conditions[J].Control and Information Technology,2024(2):26-31.
    [93] WANG L,WEN J,CAI M,et al.Distributed optimization control schemes applied on offshore wind farm active power regulation[J].Energy Procedia,2017,105:1192-1198.
    [94] DONG Z,LI Z G,DU L Y,et al.Coordination strategy of large-scale DFIG-based wind farm for voltage support with high converter capacity utilization[J].IEEE Transactions on Sustainable Energy,2021,12(2):1416-1425.
    [95] EBEGBULEM J,GUAY M.Distributed extremum seeking control for wind farm power maximization[J].IFAC-PapersOnLine,2017,50(1):147-152.
    [96] EBEGBULEM J,GUAY M.Power maximization of wind farms using discrete-time distributed extremum seeking control[J].IFAC-PapersOnLine,2018,51(18):339-344.
    [97] SHU T,SONG D R,JOO Y H.Non-centralised coordinated optimisation for maximising offshore wind farm power via a sparse communication architecture[J].Applied Energy,2022,324:119705.
    [98] HUANG S,WU Q W,GUO Y F,et al.Bi-level decentralized active power control for large-scale wind farm cluster[J].International Journal of Electrical Power & Energy Systems,2019,111:201-215.
    [99] 鲁鹏,田浩,武伟鸣,等.需求侧能量枢纽和储能协同提升风电消纳和平抑负荷峰谷模型[J].电力科学与技术学报,2021,36(1):42-51. LU Peng,TIAN Hao,WU Weiming,et al.Demand side energy hub and energy storage cooperate to smooth peak and valley and improve wind power consumption model[J].Journal of Electric Power Science and Technology,2021,36(1):42-51.
    [100] HAN J,MIAO S H,CHEN Z,et al.Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service[J].Applied Energy,2021,304:117910.
    [101] KHAZAEI J,NGUYEN D H.Distributed consensus for output power regulation of DFIGs with on-site energy storage[J].IEEE Transactions on Energy Conversion,2019,34(2):1043-1051.
    [102] BAROS S,ILI? M D.A consensus approach to real-time distributed control of energy storage systems in wind farms[J].IEEE Transactions on Smart Grid,2019,10(1):613-625.
    [103] CHEN S Y,LIU D,YANG Q F,et al.Cooperative control strategy for distributed wind-storage combined system based on consensus protocol[J].International Journal of Electrical Power & Energy Systems,2021,127:106681.
    [104] NEGENBORN R R,MAESTRE J M.Distributed model predictive control:an overview and roadmap of future research opportunities[J].IEEE Control Systems Magazine,2014,34(4):87-97.
    [105] ZHAO H R,WU Q W,GUO Q L,et al.Coordinated voltage control of a wind farm based on model predictive control[J].IEEE Transactions on Sustainable Energy,2016,7(4):1440-1451.
    [106] GUO Y F,GAO H L,WU Q W,et al.Enhanced voltage control of VSC-HVDC-connected offshore wind farms based on model predictive control[J].IEEE Transactions on Sustainable Energy,2018,9(1):474-487.
    [107] KHALID M,SAVKIN A V.A model predictive control approach to the problem of wind power smoothing with controlled battery storage[J].Renewable Energy,2010,35(7):1520-1526.
    [108] SINISCALCHI-MINNA S,BIANCHI F D,OCAMPO-MARTINEZ C,et al.A non-centralized predictive control strategy for wind farm active power control:a wake-based partitioning approach[J].Renewable Energy,2020,150:656-669.
    [109] LI G Q,YE H.Hierarchical nonlinear model predictive control for frequency support of wind farm[J].International Journal of Electrical Power & Energy Systems,2021,129:106820.
    [110] LIU W P,LIU Y T.Hierarchical model predictive control of wind farm with energy storage system for frequency regulation during black-start[J].International Journal of Electrical Power & Energy Systems,2020,119:105893.
    [111] PUSTINA L,BIRAL F,SERAFINI J.A novel Economic Nonlinear Model Predictive Controller for power maximisation on wind turbines[J].Renewable and Sustainable Energy Reviews,2022,170:112964.
    [112] WEI J,CAO Y J,WU Q W,et al.Coordinated droop control and adaptive model predictive control for enhancing HVRT and post-event recovery of large-scale wind farm[J].IEEE Transactions on Sustainable Energy,2021,12(3):1549-1560.
    [113] BOYD S.Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[M].Norwell:now Publishers Inc,2010.
    [114] HUANG S,LI P Y,WU Q W,et al.ADMM-based distributed optimal reactive power control for loss minimization of DFIG-based wind farms[J].International Journal of Electrical Power & Energy Systems,2020,118:105827.
    [115] LIAO W,LI P Y,WU Q W,et al.Distributed optimal active and reactive power control for wind farms based on ADMM[J].International Journal of Electrical Power & Energy Systems,2021,129:106799.
    [116] WEI J,WU Q W,LI C B,et al.Hierarchical event-triggered MPC-based coordinated control for HVRT and voltage restoration of large-scale wind farm[J].IEEE Transactions on Sustainable Energy,2022,13(3):1819-1829.
    [117] 彭桂喜,袁思遥,高梓寒,等.基于深度学习低图像要求的继电保护压板状态自动识别方法[J].电力科学与技术学报,2024,39(2):134-142. PENG Guixi,YUAN Siyao,GAO Zihan,et al.Automatic recognition method on pressing plate state of relay protection based on deep learning and low image requirements[J].Journal of Electric Power Science and Technology,2024,39(2):134-142.
    [118] 韩保军,高强,代飞,等.基于协同奖励函数多目标强化学习的智能频率控制策略研究[J].电力科学与技术学报,2023,38(2):18-29. HAN Baojun,GAO Qiang,DAI Fei,et al.Intelligent frequency control strategy based on multi-objective reinforcement learning of cooperative reward function[J].Journal of Electric Power Science and Technology,2023,38(2):18-29.
    [119] 汪希玥,柯德平,徐箭,等.考虑动态无功支撑的双馈风电机组协调控制策略[J].武汉大学学报(工学版),2024,57(6):728-737. WANG Xiyue,KE Deping,XU Jian,et al.Coordinated control strategy of doubly-fed induction generator considering dynamic reactive power support[J].Engineering Journal of Wuhan University,2024,57(6):728-737.
    [120] YIN X X,ZHAO X W.Deep neural learning based distributed predictive control for offshore wind farm using high-fidelity LES data[J].IEEE Transactions on Industrial Electronics,2020,68(4):3251-3261.
    [121] 侯倩,郝晓光,金飞,等.基于混合深度学习的风电功率预测及一次调频应用[J].热能动力工程,2023,38(10):167-175. HOU Qian,HAO Xiaoguang,JIN Fei,et al.Wind power prediction and primary frequency regulation application based on hybrid deep learning[J].Journal of Engineering for Thermal Energy and Power,2023,38(10):167-175.
    [122] 孙冉,王建波,马彦钊,等.基于强化学习的新能源场站储能一次调频自适应控制策略[J].储能科学与技术,2024,13(3):858-869. SUN Ran,WANG Jianbo,MA Yanzhao,et al.Adaptive control strategy for primary frequency regulation for new energy storage stations based on reinforcement learning[J].Energy Storage Science and Technology,2024,13(3):858-869.
    [123] 郑弘奇,江岳文,戴锦山.不确定环境下基于多智能体Q学习的海上风电输电工程电压调整降损优化[J].中国电机工程学报,2024,44(20):7995-8009. ZHENG Hongqi,JIANG Yuewen,DAI Jinshan.Optimization of Voltage Regulation and Loss Reduction of Offshore Wind Power Transmission Based on Multi-agent Q-learning in Uncertain Environment [J].Proceedings of the CSEE,2024,44(20):7995-8009.
    [124] XIE J J,DONG H Y,ZHAO X W,et al.Wind farm power generation control via double-network-based deep reinforcement learning[J].IEEE Transactions on Industrial Informatics,2022,18(4):2321-2330.
    [125] 高国栋,朱丹丹,周前,等.基于多智能体深度强化学习的风电集群无功电压分层优化控制策略[J/OL].高电压技术,1-14[2025-01-23].https://doi.org/10.13336/j.1003-6520.hve.241472. GAO Guodong,ZHU Dandan,ZHOU Qian,et al.Optimization control strategy for reactive power and voltage partitioning in wind power clusters based on multi-agent reinforcement learning[J/OL].High Voltage Engineering,1-14[2025-01-23].https://doi.org/10.13336/j.1003-6520.hve.241472.
    [126] LIANG Y C,ZHAO X W,SUN L.A multiagent reinforcement learning approach for wind farm frequency control[J].IEEE Transactions on Industrial Informatics,2023,19(2):1725-1734.
    [127] DONG H Y,ZHAO X W.Data-driven wind farm control via multiplayer deep reinforcement learning[J].IEEE Transactions on Control Systems Technology,2023,31(3):1468-1475.
    [128] 韩佶,苗世洪,Martinez-Rico Jon,等.基于机群划分与深度强化学习的风电场低电压穿越有功/无功功率联合控制策略[J].中国电机工程学报,2023,43(11):4228-4244. HAN Ji,MIAO Shihong,JON M R,et al.Combined Re/active power control for wind farm under low voltage ride through based on wind turbines grouping and deep reinforcement learning[J].Proceedings of the CSEE,2023,43(11):4228-4244.
    [129] HAN J,CHEN Z.An inertial control method for large-scale wind farm based on hierarchical distributed hybrid deep-reinforcement learning[J].Journal of Cleaner Production,2024,450:142034.
    [130] 杨铎烔,俞靖一,葛俊,等.海上风电场自适应多目标无功优化控制策略[J].电力工程技术,2024,43(3):121-129. YANG Duotong,YU Jingyi,GE Jun,et al.Adaptive multi-objective reactive power optimization control strategy for offshore wind farms[J].Electric Power Engineering Technology,2024,43(3):121-129.
    [131] 李世春,苏凌杰,张志刚,等.基于改进粒子群算法的风电场虚拟惯量优化分配方法[J].智慧电力,2023,51(8):8-14+22. LI Shichun,SU Lingjie,ZHANG Zhigang,et al.Optimal allocation method of wind farm virtual inertia based on improved particle swarm optimization algorithm[J].Smart Power,2023,51(8):8-14+22.
    [132] 刘瑶,周雨豪,郭泽宇,等.考虑风电不确定性的风储电站主动参与电网调压控制策略研究[J/OL].现代电力,1-10[2025-01-01].https://doi.org/10.19725/j.cnki.1007-2322.2023.0184. LIU Yao,ZHOU Yuhao,GUO Zeyu,et al.Research on control strategy of wind storage power station’s active participation in power grid voltage regulation considering wind power uncertainty [J/OL].Modern Electric Power,1-10[2025-01-01].https://doi.org/10.19725/j.cnki.1007-2322.2023.0184.
    [133] 潘生雄,赵霞,罗映红,等.基于SMES/BESS混合储能抑制风电功率波动的控制策略[J].电测与仪表,2020,57(5):101-106. PAN Shengxiong,ZHAO Xia,LUO Yinghong,et al.Control strategy for suppressing wind power fluctuation based on SMES/BESS hybrid energy storage[J].Electrical Measurement & Instrumentation,2020,57(5):101-106.
    [134] 杜强.计及系统备用约束的风电场功率优化控制研究[J].电气自动化,2022,44(2):15-17. DU Qiang.Research on wind farm power optimal control considering system reserve constraints[J].Electrical Automation,2022,44(2):15-17.
    [135] 孙欣宇,向东,丁伟,等.基于麻雀搜索算法的风电机组独立变桨控制研究[J].太阳能学报,2023,44(10):266-274. SUN Xinyu,XIANG Dong,DING Wei,et al.Research on individual pitch control of wind turbine based on sparrow search algorithm[J].Acta Energiae Solaris Sinica,2023,44(10):266-274.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩 佶,邓钰婷,耿子越,等.大规模风电场协调控制架构及算法综述[J].电力科学与技术学报,2025,40(1):1-18.
HAN Ji, DENG Yuting, GENG Ziyue, et al. Review of coordinated control architectures and algorithms for large‑scale wind farms[J]. Journal of Electric Power Science and Technology,2025,40(1):1-18.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-18
文章二维码