基于深度强化学习的电力系统紧急切机稳控策略生成方法
作者:
作者单位:

(1.中国南方电网有限责任公司,广东 广州 510663;2.南京南瑞继保电气有限公司,江苏 南京 211102)

通讯作者:

夏尚学(1978—),男,硕士,教授级工程师,主要从事电网安全稳定控制方面的研究;E?mail:p344717084_1006x@126.com

中图分类号:

TM723

基金项目:

中国南方电网有限责任公司科技项目(000005KK52220027)


Policy generation method for power system stability control during emergent tripping of unit based on deep reinforcement learning
Author:
Affiliation:

(1.China Southern Power Grid Co., Ltd., Guangzhou 510663, China; 2.NR Electric Co., Ltd., Nanjing 211102, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    电力系统快速发展的同时也改变着电力系统的结构,使得系统稳定机理变得更加复杂。为解决新能源电力系统存在的功角稳定问题,提出基于深度强化学习的电力系统紧急切机稳控策略生成方法。首先,归纳并提出电力系统紧急控制切机动作策略以及涉及的安全约束,并将电力系统稳控模型转换为马尔科夫决策过程,再采用特征评估与斯皮尔曼 (Spearman)等级相关系数方法筛选出最典型的特征数据;随后,为提高稳控策略智能体的训练效率,提出基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的稳控策略训练框架;最后,在IEEE 39节点系统和某实际电网中进行测试验证。研究结果显示,所提方法能够根据系统的运行状态和对故障的响应,自动调整生成切机稳控策略,在决策效果和效率方面都表现出更好的性能。

    Abstract:

    The rapid development of the power system has been changing its structure, making the system stability mechanism more complex. To ensure power angle stability in the new energy power system, a policy generation method for power system stability control during emergent tripping of units based on deep reinforcement learning is proposed. Firstly, the policies for emergent tripping of units of the power system are summarized, as well as the security constraints involved. The power system stability control model is then transformed into a Markov decision process. Next, the most typical feature data are selected by feature evaluation and the Spearman rank correlation coefficient method. To improve the training efficiency of the intelligent agent of the stability control policy, a training framework for the stability control policy based on the deep deterministic policy gradient (DDPG) is put forward. Finally, tests are performed in the IEEE 39 node system and a real-life power grid for validation. The results show that the proposed method can automatically adjust and generate a stability control policy for tripping of units according to the system’s running states and fault responses, confirming its enhanced decision-making effect and efficiency.

    参考文献
    [1] 韩保军,高强,代飞,等.基于协同奖励函数多目标强化学习的智能频率控制策略研究[J].电力科学与技术学报,2023,38(2):18-29. HAN Baojun,GAO Qiang,DAI Fei,et al.Intelligent frequency control strategy based on multi-objective reinforcement learning of cooperative reward function[J].Journal of Electric Power Science and Technology,2023,38(2):18-29.
    [2] 李响,张丹,李秋燕,等.计及随机性的多分布式电源接入中压配电网承载能力评估[J].电力系统保护与控制,2024,52(17):150-160. LI Xiang,ZHANG Dan,LI Qiuyan,et al.Hosting capacity evaluation of distributed generators accessing a medium voltage distribution network considering randomness[J].Power System Protection and Control,2024,52(17):150-160.
    [3] 张磊光,陈海涛,杨军.基于SAC算法的含柔性负荷电?气互联系统的频率与气压协调控制策略[J].智慧电力,2024,52(4):8-14. ZHANG Leiguang,CHEN Haitao,YANG Jun.Frequency-pressure coordinated control strategy of electrical-gas interconnection system based on SAC algorithm[J].Smart Power,2024,52(4):8-14.
    [4] OJETOLA S,WOLD J,TRUDNOWSKI D.Multi-loop transient stability control via power modulation from energy storage devices[J].IEEE Transactions on Power Systems,2021,36(6):5153-5163.
    [5] 李建林,胡笳扬,辛迪熙,等.基于参数自调节的电氢耦合系统调频控制策略研究[J].高压电器,2024,60(7):1-11.LI Jianlin,HU Jiayang,XIN Dixi,et al.Research on frequency modulation control strategy of electric-hydrogen coupling system based on parameter self-regulation[J].High Voltage Apparatus,2024,60(7):1-11.
    [6] 张柏林,李希德,魏博,等.基于改进的场景分类和去粗粒化MCMC的风电出力模拟方法[J].电测与仪表,2024,61(7):41-49. ZHANG Bolin,LI Xide,WEI Bo,et al.Wind power output simulation method based on improved scene classification algorithm and time series correlation[J].Electrical Measurement & Instrumentation,2024,61(7):41-49.
    [7] 张建新,常东旭,邱建,等.适应新型电力系统的安全稳定控制系统及装置设计方法[J].电网与清洁能源,2023,39(12):10-19. ZHANG Jianxin,CHANG Dongxu,QIU Jian,et al.A design method of stability control device and system adapted to new power systems[J].Power System and Clean Energy,2023,39(12):10-19.
    [8] 张红丽,刘福锁,李威.考虑新能源短时波动的大电网在线暂态安全稳定控制方法[J].电力系统自动化,2023,47(20):166-173. ZHANG Hongli,LIU Fusuo,LI Wei.Online transient security and stability control method for large power grids considering short-term fluctuations of new energy sources[J].Automation of Electric Power Systems,2023,47(20):166-173.
    [9] 李晨,张昊,周济,等.考虑频率电压空间分布特性的电网实时减载及负荷恢复策略[J].电力科学与技术学报,2021,36(2):162-171+216. LI Chen,ZHANG Hao,ZHOU Ji,et al.Load shedding and load recovery strategy considering spatial distribution characteristics of frequency and voltage[J].Journal of Electric Power Science and Technology,2021,36(2):162-171+216.
    [10] 阚骏,董希建,王敏,等.基于MCMC的电网安全稳定控制系统动态可靠性评估方法[J].电力工程技术,2024,43(3):23-31. KAN Jun,DONG Xijian,WANG Min,et al.Dynamic reliability evaluation method for power grid safety and stability control system based on MCMC[J].Electric Power Engineering Technology,2024,43(3): 23-31.
    [11] 耿华,何长军,刘浴霜,等.新能源电力系统的暂态同步稳定研究综述[J].高电压技术,2022,48(9):3367-3383. GENG Hua,HE Changjun,LIU Yushuang,et al.A review of transient synchronous stability research in new energy power systems[J].High Voltage Engineering,2022,48(9): 3367-3383.
    [12] 陈韦韬,吴翔宇,许寅,等.面向暂态功角稳定提升的水光互补发电系统紧急切机控制[J].电网技术,2023,47(2):658-671. CHEN Weitao,WU Xiangyu,XU Yin,et al.Emergency cut-off control for hydro-photovoltaic complementary power generation systems to enhance transient angular stability[J].Power System Technology,2023,47(2):658-671.
    [13] 李雅晗,夏世威,马琳琳,等.交直流混联系统暂态功角稳定评估及特征量可解释性分析[J].电力建设,2024,45(2): 1-9. LI Yahan,XIA Shiwei,MA Linlin,et al.Transient power angle stability evaluation and interpretability analysis of AC/DC hybrid power system[J].Electric Power Construction,2024,45(2): 1-9.
    [14] 孙仲卿,刘福锁,李威,等.基于特征匹配的暂态稳定紧急控制策略快速生成[J].电力系统自动化,2024,48(2):167-175. SUN Zhongqing,LIU Fusuo,LI Wei,et al.Rapid generation of transient stability emergency control strategy based on feature matching[J].Automation of Electric Power Systems,2024,48(2):167-175.
    [15] 付浩,李鹏,富晓鹏,等.面向多FPGA实时仿真器的资源优化配置方法[J].电力系统自动化,2023,47(11):88-100. FU Hao,LI Peng,FU Xiaopeng,et al.Resource optimization configuration method for real-time simulators based on multiple FPGAs[J].Automation of Electric Power Systems,2023,47(11): 88-100.
    [16] 肖友强,邓步青,文云峰.计及送端电网频率稳定的直流联络线极限承载能力评估[J].电力科学与技术学报,2021,36(2):3-12. XIAO Youqiang,DENG Buqing,WEN Yunfeng.Total transfer capability assessment of HVDC tie-lines based on frequency stability of the sending-end grid[J].Journal of Electric Power Science and Technology,2021,36(2):3-12.
    [17] 郝晓亮,付立军,马凡,等.中压直流综合电力系统建模与实时仿真实现方法[J].电网技术,2021,45(3):1100-1109. HAO Xiaoliang,FU Lijun,MA Fan,et al.Modeling and real time simulation of MVDC integrated power system[J].Power System Technology,2021,45(3): 1100-1109.
    [18] 潘晓杰,徐友平,解治军,等.堆栈式集成学习驱动的电力系统暂态稳定预防控制优化方法[J].发电技术,2023,44(6):865-874. PAN Xiaojie,XU Youping,XIE Zhijun,et al.Power system transient stability preventive control optimization method driven by stacking ensemble learning[J].Power Generation Technology,2023,44(6):865-874.
    [19] 李宏浩,张沛,刘曌.基于深度强化学习的暂态稳定紧急控制决策方法[J].电力系统自动化,2023,47(5):144-152. LI Honghao,ZHANG Pei,LIU Zhao.Decision-making method for emergency control of transient stability based on deep reinforcement learning[J].Automation of Electric Power Systems,2023,47(5): 144-152.
    [20] XIE J,SUN W.Distributional deep reinforcement learning-based emergency frequency control[J].IEEE Transactions on Power Systems,2021,37(4): 2720-2730.
    [21] 王彤,刘九良,朱劭璇,等.基于随机森林的电力系统暂态稳定评估与紧急控制策略[J].电网技术,2020,44(12): 4694-4701. WANG Tong,LIU Jiuliang,ZHU Shaoxuan,et al.Transient stability assessment and emergency control strategy based on random forest in power system[J].Power System Technology,2020,44(12):4694-4701.
    [22] CUI W,JIANG Y,ZHANG B.Reinforcement learning for optimal primary frequency control: a Lyapunov approach[J].IEEE Transactions on Power Systems,2022,38(2): 1676-1688.
    [23] 卢恒光,林碧琳,温步瀛.基于深度强化学习的切机控制策略研究[J].电器与能效管理技术,2023(3):11-15+68. LU Hengguang,LIN Bilin,WEN Buying.Research on generator tripping control strategy based on deep reinforcement learning[J].Electrical & Energy Management Technology,2023(3):11-15+68.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高 琴,徐光虎,夏尚学,等.基于深度强化学习的电力系统紧急切机稳控策略生成方法[J].电力科学与技术学报,2025,40(1):39-46.
GAO Qin, XU Guanghu, XIA Shangxue, et al. Policy generation method for power system stability control during emergent tripping of unit based on deep reinforcement learning[J]. Journal of Electric Power Science and Technology,2025,40(1):39-46.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-18
文章二维码