变电站室内无人机位姿估计方法
作者:
作者单位:

(1.广东电网有限责任公司中山供电局,广东 中山 528400;2.武汉大学电气与自动化学院,湖北 武汉 430072)

通讯作者:

张永挺(1980—),男,高级工程师,主要从事电力系统智能运维技术的研究;E?mail:305135125@qq.com

中图分类号:

TM930

基金项目:

南方电网公司科技项目(GDKJXM20230706)


Pose estimation method for indoor unmanned aerial vehicles in substations
Author:
Affiliation:

(1.Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhongshan 528400, China; 2.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像头的泛在物联的多视觉?惯导融合框架,针对室内光线情况对无人机摄像头图像进行强化,并与IMU数据结合得到初步的无人机位置数据。进一步通过在无人机上布设二维码(quick response code,QR码),应用改进后的PnP(perspective?n?point)算法优化无人机位姿数据。飞行结束后在无人机机巢对IMU的累计误差进行校验。实验证明:该方法布设与维护的工作量小,相较仅依靠搭载摄像头与IMU数据融合算法,飞行精度有较大提高,可满足变电站内无人机巡检作业的需要。

    Abstract:

    Indoor unmanned aerial vehicle (UAV) inspection in substations can effectively reduce the intensity of manual inspection operations. Due to high flight accuracy requirements and limited carrying capacity, relying solely on UAV-mounted cameras and inertial measurement unit (IMU) data fusion to determine pose fails to meet precision requirements. Therefore, a multi-vision-inertial navigation fusion framework based on the ubiquitous IoT with existing fixed cameras in the substation is proposed. The images of UAV-mounted cameras for indoor lighting conditions are enhanced and combined with IMU data to obtain preliminary UAV position data. In addition, by deploying quick response (QR) codes on UAVs, the improved perspective?n?point (PnP) algorithm is applied to optimize UAV pose data. After the flight is completed, the cumulative error of IMU in the UAV nest is verified. Experimental results have shown that the deployment and maintenance workload of this method is small, and the flight accuracy is significantly improved compared to relying solely on cameras and IMU data fusion algorithms. It can meet the needs of UAV inspection operations in substations.

    参考文献
    [1] 彭明智,许尧,胡永波,等.基于人工智能技术的变电站二次设备智能巡检技术[J].高电压技术,2023,49(增刊1):90-96. PENG Zhiming,XU Yao,HU Yongbo,et al.Intelligent inspection technology for secondary equipment in substations based on artificial intelligence technology[J].High Voltage Engineering,2023,49(sup 1):90-96.
    [2] 柯清派,史训涛,袁智勇,等.基于改进遗传算法的变电站巡检机器人路径规划[J].电测与仪表,2023,60(8):144-149. KE Qingpai,SHI Xuntao,YUAN Zhiyong,et al.Route planning for substation patrol robot based on improved genetic algorithms[J].Electrical Measurement & Instrumentation,2023,60(8):144-149.
    [3] 唐旭辰,潮铸,段秦尉,等.基于分层测量数据的高压变电站概率负荷预测方法[J].中国电力,2023,56(8): 143-150. TANG Xuchen,CHAO Zhu,DUAN Qinwei,et al.Probabilistic load forecasting method of high voltage substation based on hierarchical measurement data[J].Electric Power,2023,56(8): 143-150.
    [4] 杜奇伟,张超,韩洪夫.基于间隔分图的智能变电站运维关键技术研究[J].电网与清洁能源,2023,39(7):67-72. DU Qiwei,ZHANG Chao,HAN Hongfu.A study on key technologies of intelligent substation operation and maintenance based on bay detail drawing[J].Power System and Clean Energy,2023,39(7):67-72.
    [5] 谷梦瑶,徐新胜,何雨辰.面向变电站机器人巡检的加权嵌套决策树数据质量协同评价方法[J].智慧电力,2024,52(9):65-71. GU Mengyao,XU Xinsheng,HE Yuchen.Data quality collaborative evaluation method for substation robot inspection using weighted nested decision tree[J].Smart Power,2024,52(9):65-71.
    [6] 李杰,董林杰,汤小兵,等.变电站二次设备全向巡检机器人精确定位与作业辨识[J].电力工程技术,2024,43(3):234-243. LI Jie,DONG Linjie,TANG Xiaobing,et al.Precise positioning and identification of omnidirectional inspection robot for substation secondary equipment[J].Electric Power Engineering Technology,2024,43(3): 234-243.
    [7] 焦嵩鸣,首云锋,白健鹏,等.变电站巡检无人机分层运动规划方法研究[J].系统仿真学报,2023,35(9):1975-1984. JIAO Songming,SHOU Yunfeng,BAI Jianpeng,et al.Research on hierarchical motion planning method for UAV substation inspection[J].Journal of System Simulation,2023,35(9):1975-1984.
    [8] 赵伟达,陈海文,郭陆阳,等.基于YOLO-E与改进OCRNet图像分割的变电站仪表读数自适应识别方法[J].电力建设,2023,44(11): 75-85. ZHAO Weida,CHEN Haiwen,GUO Luyang,et al.Substation meter readings and dial information identification method based on YOLO-E and enhanced OCRNet image segmentation[J].Electric Power Construction,2023,44(11): 75-85.
    [9] 常俊晓,应宇鹏,廖小兵,等.基于图像处理的继电保护装置定值自动核对方法[J].电测与仪表,2023,35(6):50-58. CHANG Junxiao,YING Yupeng,LIAO Xiaobing,et al.The automatic checking method of setting value for relay protection device based on image processing[J].Electrical Measurement & Instrumentation,2023,35(6):50-58.
    [10] 凌刚,赵希才,刘千宽,等.继电保护智能运维检修标准体系构建研究[J].供用电,2023,40(9):36-42. LING Gang,ZHAO Xicai,LIU Qiankuan,et al.Research on standard system construction of intelligent operation and maintenance for relay protection[J].Distribution & Utilization,2023,40(9):36-42.
    [11] 戴志辉,杨鑫,耿宏贤,等.基于电力物联网的继电保护定值智能运维系统研究[J].电力系统及其自动化学报,2023,35(6):50-58. DAI Zhihui,YANG Xin,GENG Hongxian,et al.Intelligent operation and maintenance system for relay protection setting based on power internet-of-things[J].Proceedings of the CSU-EPSA,2023,35(6):50-58.
    [12] 王幸主,文明浩,李嘉琪,等.双重化继电保护系统可靠性分析方法研究[J].电力系统保护与控制,2024,52(17):168-176. WANG Xingzhu,WEN Minghao,LI Jiaqi,et al.A reliability analysis method of dual-redundant relay protection systems[J].Power System Protection and Control,2024,52(17):168-176.
    [13] WANG Y.An efficient algorithm for UAV indoor pose estimation using vanishing geometry[C]//12th IAPR Conference on Machine Vision Applications(MVA),Nara,Japan,2011.
    [14] 肖洋,李志强,程林,等.西北电网集中式调相机AVC综合协调控制策略[J].发电技术,2023,44(2):270-279. XIAO Yang,LI Zhiqiang,CHENG Lin,et al.AVC comprehensive coordinated control strategy of centralized condenser in northwest power grid[J].Power Generation Technology,2023,44(2):270-279.
    [15] WEISS S,ACHTELIK M W,LYNEN S,et al.Monocular vision for long-term micro aerial vehicle state estimation:a compendium[J].Journal of Field Robotics,2013,30(5):803-831.
    [16] 何一,张亚妮,王永生.超宽带微型无人机数据链传输性能分析[J].西北工业大学学报,2009,27(2):245-249. HE Yi,ZHANG Yanni,WANG Yongsheng.On the propagation performance of UWB-MAV data links[J].Journal of Northwestern Polytechnical University,2009,27(2):245-249.
    [17] 普子恒,陈志刚,史星涛,等.考虑合成电场影响的换流站直流场巡检机器人路径优化[J].高压电器,2023,59(5):178-184. PU Ziheng,CHEN Zhigang,SHI Xingtao,et al.Path optimization of dc field patrol inspection robot in converter station considering the influence of synthetic electric field[J].High Voltage Apparatus,2023,59(5):178-184.
    [18] AHRENS S,LEVINE D,ANDREWS G,et al.Vision-based guidance and control of a hovering vehicle in unknown,GPS-denied environments[C]//IEEE International Conference on Robotics and Automation,ICRA′09,Kobe,Japan,2009.
    [19] ABEYWARDENA D,WANG Z,KODAGODA S,et al.Visual-inertial fusion for quadrotor micro air vehicles with improved scale observability[C]//IEEE International Conference on Robotics and Automation (ICRA),Karlsruhe,Germany,2013.
    [20] MIAO C,LI J.Autonomous landing of small unmanned aerial rotorcraft based on monocular vision in GPS-denied area[J].IEEE/CAA Journal of Automatica Sinica,2015,2(1):109-114.
    [21] PHANG S K,ONG J J,RONALD T C,et al,Autonomous mini-UAV for indoor flight with embedded on-board vision processing as navigation system[C]//IEEE Region 8 Internationa Conference on Computational Technologies in Electrical and Electronics Engineering(SIBIRCON),Listvyanka,Irkutsk,Russia,2010.
    [22] CHEN F,CHOPRA I,POTYAGAYLO S,et al.Towards model-free SLAM using a single laser range scanner for helicopter MAV[C]//AIAA Guidance,Navigation,& Control Conference,Portland,OR,United States,2013.
    [23] CADENA C,CARLONE L,CARRILLO H,et al.Past,present,and future of simultaneous localization and mapping:toward the robust-perception age[J].IEEE Transactions on Robotics,2016,32(6):1309-1332.
    [24] WEISS S,ACHTELIK M W,LYNEN S,et al.Monocular vision for long-term micro aerial vehicle state estimation: a compendium[J].Journal of Field Robotics,2013,30(5):803-831.
    [25] 周克旻,周蓉,滕婧,等.多标记室内小型无人机定位与姿态估计方法[J].计算机工程与应用,2019,55(22):231-238. ZHOU Kemin,ZHOU Rong,TENG Jing,et al.Method of location and attitude estimation for small indoor UAV with multiple markers[J].Computer Engineering and Applications,2019,55(22):231-238.
    [26] 王继红,吴伯彪,张亚超,等.视觉和惯导信息融合小型无人机位姿估计研究[J].中国测试,2021,47(11):134-140+152. WANG Jihong,WU Bobiao,ZHANG Yachao,et al.Pose estimation of small UAV based on vision and INS information fusion[J].China Measurement &Test,2021,47(11):134-140+152.
    [27] MUR-ARTAL R,MONTIEL J M M,TARDOS J D.ORB-SLAM:a versatile and accurate monocular SLAM system[J].IEEE Transactions on Robotics,2015,31(5):1147-1163.
    [28] 黎萍,操超超.适应于弱光环境的ORB-SLAM算法[J].北京邮电大学学报,2024,47(1):106-111. LI Ping,CAO Chaochao.ORB-SLAM algorithm for low light environment[J].Journal of Beijing University of Posts and Telecommunications,2024,47(1):106-111.
    [29] 周宁.基于二维码标记的视觉惯性定位方法研究[D].哈尔滨:哈尔滨工业大学,2021. ZHOU Ning.Research on visual-internal localization with two-dimentional code maskers[D].Harbin:Harbin Institute of Technology,2021.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张永挺,韩彦微,林永昌,等.变电站室内无人机位姿估计方法[J].电力科学与技术学报,2025,40(1):138-145.
ZHANG Yongting, HAN Yanwei, LIN Yongchang, et al. Pose estimation method for indoor unmanned aerial vehicles in substations[J]. Journal of Electric Power Science and Technology,2025,40(1):138-145.

复制
分享
文章指标
  • 点击次数:27
  • 下载次数: 41
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-03-18
文章二维码