变电站室内无人机位姿估计方法
作者:
作者单位:

(1.广东电网有限责任公司中山供电局,广东 中山 528400;2.武汉大学电气与自动化学院,湖北 武汉 430072)

通讯作者:

张永挺(1980—),男,高级工程师,主要从事电力系统智能运维技术的研究;E?mail:305135125@qq.com

中图分类号:

TM930

基金项目:

南方电网公司科技项目(GDKJXM20230706)


Pose estimation method for indoor unmanned aerial vehicles in substations
Author:
Affiliation:

(1.Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhongshan 528400, China; 2.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像头的泛在物联的多视觉?惯导融合框架,针对室内光线情况对无人机摄像头图像进行强化,并与IMU数据结合得到初步的无人机位置数据。进一步通过在无人机上布设二维码(quick response code,QR码),应用改进后的PnP(perspective?n?point)算法优化无人机位姿数据。飞行结束后在无人机机巢对IMU的累计误差进行校验。实验证明:该方法布设与维护的工作量小,相较仅依靠搭载摄像头与IMU数据融合算法,飞行精度有较大提高,可满足变电站内无人机巡检作业的需要。

    Abstract:

    Indoor unmanned aerial vehicle (UAV) inspection in substations can effectively reduce the intensity of manual inspection operations. Due to high flight accuracy requirements and limited carrying capacity, relying solely on UAV-mounted cameras and inertial measurement unit (IMU) data fusion to determine pose fails to meet precision requirements. Therefore, a multi-vision-inertial navigation fusion framework based on the ubiquitous IoT with existing fixed cameras in the substation is proposed. The images of UAV-mounted cameras for indoor lighting conditions are enhanced and combined with IMU data to obtain preliminary UAV position data. In addition, by deploying quick response (QR) codes on UAVs, the improved perspective?n?point (PnP) algorithm is applied to optimize UAV pose data. After the flight is completed, the cumulative error of IMU in the UAV nest is verified. Experimental results have shown that the deployment and maintenance workload of this method is small, and the flight accuracy is significantly improved compared to relying solely on cameras and IMU data fusion algorithms. It can meet the needs of UAV inspection operations in substations.

    参考文献
    相似文献
    引证文献
引用本文

张永挺,韩彦微,林永昌,等.变电站室内无人机位姿估计方法[J].电力科学与技术学报,2025,40(1):138-145.
ZHANG Yongting, HAN Yanwei, LIN Yongchang, et al. Pose estimation method for indoor unmanned aerial vehicles in substations[J]. Journal of Electric Power Science and Technology,2025,40(1):138-145.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-18
文章二维码