基于BiGRU+CRF深度学习模型的水电站调度运行知识图谱构建方法
作者:
作者单位:

(1.三峡水利枢纽梯级调度通信中心,四川 成都 610095;2.华中科技大学电气与电子工程学院,湖北 武汉 430074;3.武汉华飞智能电气科技有限公司,湖北 武汉 430074)

通讯作者:

周良松(1967—),男,博士,副教授,主要从事电力系统运行与控制方面研究;E?mail:zhouls@hust.edu.cn

中图分类号:

TM73

基金项目:

中国长江电力股份有限公司资助(Z432302005)


A construction method of dispatching operation knowledge graph of hydro power stations based on BiGRU + CRF deep learning model
Author:
Affiliation:

(1.Three Gorges Cascade Dispatch & Communication Center,Chengdu 610095, China; 2.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;3.Wuhan Huafei Intelligent Electric Technology Co., Ltd., Wuhan 430074, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    调度运行规程对水电站事故处置具有重要的指导意义。为此,以水电站调度运行规程为研究对象,通过对规程文本进行知识表示、知识抽取和结构化管理,提出一种自顶向下的水电站调度运行知识图谱构建方法。首先,通过术语、概念和关系抽取,构建知识图谱的模式层;随后,采用双向门控循环单元(bi?directional gated recurrent unit,BiGRU)神经网络和条件随机场(conditional random field,CRF)的深度学习模型对规程文本进行实体抽取,根据知识图谱的模式层构建其数据层;最后,基于对国内大型梯级水电站调度运行规程的学习,构建水电站调度运行知识图谱,通过仿真算例对其进行验证。结果表明:所构建的水电站调度运行知识图谱可以为电站值班人员开展事故处置提供辅助决策,有效提升水电站的应急管理与调度智能化水平。

    Abstract:

    The dispatching operation regulations have great significance in guiding the failure handling of hydro power stations. Therefore, the dispatching operation regulations of the hydro power station are used as the research object, and a top-down construction method of the dispatching operation knowledge graph of hydro power stations is proposed by means of knowledge representation, knowledge extraction, and structured management of regulations. First, through term, concept, and relationship extraction, the schema layer of the knowledge graph is constructed. Then, the data layer is built according to the schema layer with entity extraction of regulations by using a deep learning model with a bi-directional gated recurrent unit (BiGRU) network and conditional random field (CRF). Finally, by learning the dispatching operation regulations of a large-scale ladder hydro power station located in China, the dispatching operation knowledge graph of the hydro power station is constructed, and the effectiveness of the proposed method is verified with simulation results. The results show that the constructed dispatching operation knowledge graph of the hydro power station can help the staff of the hydro power station to carry out failure handling with assistant decision-making and effectively improve the level of emergency management and dispatching intelligence of the hydro power station.

    参考文献
    相似文献
    引证文献
引用本文

徐 涛,邹泽华,胡仁焱,等.基于BiGRU+CRF深度学习模型的水电站调度运行知识图谱构建方法[J].电力科学与技术学报,2025,40(1):180-189.
XU Tao, ZOU Zehua, HU Renyan, et al. A construction method of dispatching operation knowledge graph of hydro power stations based on BiGRU + CRF deep learning model[J]. Journal of Electric Power Science and Technology,2025,40(1):180-189.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-18
文章二维码