基于BiGRU+CRF深度学习模型的水电站调度运行知识图谱构建方法
作者:
作者单位:

(1.三峡水利枢纽梯级调度通信中心,四川 成都 610095;2.华中科技大学电气与电子工程学院,湖北 武汉 430074;3.武汉华飞智能电气科技有限公司,湖北 武汉 430074)

通讯作者:

周良松(1967—),男,博士,副教授,主要从事电力系统运行与控制方面研究;E?mail:zhouls@hust.edu.cn

中图分类号:

TM73

基金项目:

中国长江电力股份有限公司资助(Z432302005)


A construction method of dispatching operation knowledge graph of hydro power stations based on BiGRU + CRF deep learning model
Author:
Affiliation:

(1.Three Gorges Cascade Dispatch & Communication Center,Chengdu 610095, China; 2.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;3.Wuhan Huafei Intelligent Electric Technology Co., Ltd., Wuhan 430074, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    调度运行规程对水电站事故处置具有重要的指导意义。为此,以水电站调度运行规程为研究对象,通过对规程文本进行知识表示、知识抽取和结构化管理,提出一种自顶向下的水电站调度运行知识图谱构建方法。首先,通过术语、概念和关系抽取,构建知识图谱的模式层;随后,采用双向门控循环单元(bi?directional gated recurrent unit,BiGRU)神经网络和条件随机场(conditional random field,CRF)的深度学习模型对规程文本进行实体抽取,根据知识图谱的模式层构建其数据层;最后,基于对国内大型梯级水电站调度运行规程的学习,构建水电站调度运行知识图谱,通过仿真算例对其进行验证。结果表明:所构建的水电站调度运行知识图谱可以为电站值班人员开展事故处置提供辅助决策,有效提升水电站的应急管理与调度智能化水平。

    Abstract:

    The dispatching operation regulations have great significance in guiding the failure handling of hydro power stations. Therefore, the dispatching operation regulations of the hydro power station are used as the research object, and a top-down construction method of the dispatching operation knowledge graph of hydro power stations is proposed by means of knowledge representation, knowledge extraction, and structured management of regulations. First, through term, concept, and relationship extraction, the schema layer of the knowledge graph is constructed. Then, the data layer is built according to the schema layer with entity extraction of regulations by using a deep learning model with a bi-directional gated recurrent unit (BiGRU) network and conditional random field (CRF). Finally, by learning the dispatching operation regulations of a large-scale ladder hydro power station located in China, the dispatching operation knowledge graph of the hydro power station is constructed, and the effectiveness of the proposed method is verified with simulation results. The results show that the constructed dispatching operation knowledge graph of the hydro power station can help the staff of the hydro power station to carry out failure handling with assistant decision-making and effectively improve the level of emergency management and dispatching intelligence of the hydro power station.

    参考文献
    [1] 魏明奎,蔡绍荣,江栗.高水电比重系统中梯级水电群与风光电站协调调峰优化运行策略[J].电力科学与技术学报,2021,36(2):199-208. WEI Mingkui,CAI Shaorong,JIANG Li.Peak-shaving co-optimization strategies of cascaded hydropower and wind-photovoltaic generation in systems with high penetration of hydropower[J].Journal of Electric Power Science and Technology,2021,36(2):199-208.
    [2] 张俊涛,程春田,于申,等.水电支撑新型电力系统灵活性研究进展、挑战与展望[J].中国电机工程学报,2024,44(10):3862-3884. ZHANG Juntao,CHENG Chuntian,YU Shen,et al.Progress,challenges and prospects of research on hydropower supporting the flexibility of new power systems[J].Proceedings of the CSEE,2024,44(10):3862-3884.
    [3] 王超,常海军,刘福锁,等.风光水汇集直流外送系统暂态频率电压紧急协调控制策略[J].电网与清洁能源,2023,39(12):50-60. WANG Chao,CHANG Haijun,LIU Fusuo,et al.The coordinated emergency control strategy of transient frequency and voltage stability for the HVDC transmission system collecting wind power,photovoltaic and hydropower[J].Power System and Clean Energy,2023,39(12):50-60.
    [4] 李咸善,丁胜彪,李飞,等.考虑水电调节费用补偿的风光水联盟优化调度策略[J].中国电力,2024,57(5): 26-38. LI Xianshan,DING Shengbiao,LI Fei,et al.Optimal scheduling strategy for wind-solar-hydro alliance considering compensation of regulation by hydropower[J].Electric Power,2024,57(5): 26-38.
    [5] 李鹏,余涛,李立浧,等.电力人工智能的演变与展望——从专业智能走向通用智能[J].电力系统自动化,2024,48(16):1-17. LI Peng,YU Tao,LI Licheng,et al.Retrospect and prospect of artificial intelligence for electric power system-from domain intelligence to general intelligence[J].Automation of Electric Power Systems,2024,48(16):1-17.
    [6] 余建明,单连飞,皮俊波,等.基于知识图谱的故障处置预案解析方法[J].电气自动化,2023,45(2):75-78. YU Jianming,SHAN Lianfei,PI Junbo,et al.Analysis method of fault handling plan based on knowledge graph[J].Power System & Automation,2023,45(2):75-78.
    [7] 张亮亮.基于多智能体一致性理论的智能电网内分布式储能系统自治控制方法[J].高压电器,2024,60(8):230-237. ZHANG Liangliang.Autonomous control method for distributed energy storage system in smart grid based on multi-agent consistency theory[J].High Voltage Apparatus,2024,60(8):230-237.
    [8] 姚尚衡,傅晨玲,曾金灿,等.智能电网技术创新对电力行业绿色转型的非线性影响[J].智慧电力,2024,52(2):1-7+16. YAO Shangheng,FU Chenling,ZENG Jincan,et al.Nonlinear impact of smart grid technology innovation on green transformation of power industry[J].Smart Power,2024,52(2):1-7+16.
    [9] 李家东,胡正华,蒋卫平,等.基于时间序列分类任务的智能电能表负荷监测技术研究[J].电测与仪表,2023,60(6):163-159. LI Jiadong,HU Zhenghua,JIANG Weiping,et al.Load monitoring technology of smart meters based on time series classification[J].Electrical Measurement & Instrumentation,2023,60(6):163-159.
    [10] 周二专,张思远,严剑峰,等.电网调控决策知识模型建模及实现方法[J].中国电机工程学报,2022,42(14):5057-5067. ZHOU Erzhuan,ZHANG Siyuan,YAN Jianfeng,et al.Decision knowledge modeling and implementation for power grid dispatching and control[J].Proceedings of the CSEE,2022,42(14):5057-5067.
    [11] 姚建国,余涛,杨胜春,等.提升电网调度中人工智能可用性的混合增强智能知识演化技术[J].电力系统自动化,2022,46(20):1-12. YAO Jianguo,YU Tao,YANG Shengchun,et al.Knowledge evolution technology based on hybrid-augmented intelligence for improving practicability of artificial intelligence in power grid dispatch[J].Automation of Electric Power Systems,2022,46(20):1-12.
    [12] 李鹏,黄文琦,王鑫,等.数据与知识联合驱动的人工智能方法在电力调度中的应用综述[J].电力系统自动化,2024,48(1):160-175. LI Peng,HUANG Wenqi,WANG Xin,et al.Review on application of combined data-knowledge-driven artificial intelligence methods in power dispatching[J].Automation of Electric Power Systems,2024,48(1):160-175.
    [13] NICKEL M,MURPHY K,TRESP V,et al.A review of relational machine learning for knowledge graphs[J].Proceedings of the IEEE,2016,104(1):11-33.
    [14] 武霁阳,李强,陈潜,等.知识图谱框架下基于深度学习的HVDC系统故障辨识[J].电力系统控制与保护,2023,51(20):160-169. WU Jiyang,LI Qiang,CHEN Qian,et al.Fault identification of an HVDC system based on deep learning in the framework of a knowledge graph[J].Power System Protection and Control,2023,51(20):160-169.
    [15] WU L,LIN H,GAO Z,et al.A teacher-free graph knowledge distillation framework with dual self-distillation[J].IEEE Transactions on Knowledge and Data Engineering,2024,36(9):4375-4385.
    [16] 叶欣智,尚磊,董旭柱,等.面向配电网故障处置的知识图谱研究与应用[J].电网技术,2022,46(10):3739-3749. YE Xinzhi,SHANG Lei,DONG Xuzhu,et al.Knowledge graph for distribution network fault handling[J].Power System Technology,2022,46(10):3739-3749.
    [17] 朱晓荣,彭柏,司羽,等.基于知识图谱的配电网综合评价[J].现代电力,2022,39(6):677-684. ZHU Xiaorong,PENG Bai,SI Yu,et al.Comprehensive evaluation of distribution network based on knowledge graph[J].Modern Electric Power,2022,39(6):677-684.
    [18] 乔骥,王新迎,闵睿,等.面向电网调度故障处理的知识图谱框架与关键技术初探[J].中国电机工程学报,2020,40(18):5837-5848. QIAO Ji,WANG Xinying,MIN Rui,et al.Framework and key technologies of knowledge-graph-based fault handling system in power grid[J].Proceedings of the CSEE,2020,40(18):5837-5848.
    [19] 郭榕,杨群,刘绍翰,等.电网故障处置知识图谱构建研究与应用[J].电网技术,2021,45(6):2092-2100. GUO Rong,YANG Qun,LIU Shaohan,et al.Construction and application of power grid fault handing knowledge graph[J].Power System Technology,2021,45(6):2092-2100.
    [20] 周义棋,刘畅,龙增,等.电网应急预案知识图谱构建方法与应用[J].中国安全生产科学技术,2023,19(1):5-13. ZHOU Yiqi,LIU Chang,LONG Zeng,et al.Construction method and application of knowledge graph in emergency plans for power grid[J].Journal of Safety Science and Technology,2023,19(1):5-13.
    [21] 张锐,刘剑青,张伯远,等.基于迁移学习的电网故障处置知识图谱构建及实时辅助决策研究[J].电力信息与通信技术,2022,20(6):24-34. ZHANG Rui,LIU Jianqing,ZHANG Boyuan,et al.Research on grid fault handling knowledge graph construction and real-time auxiliary decision based on transfer learning[J].Electric Power Information and Communication Technology,2022,20(6):24-34.
    [22] 李金星,李湘,高天露,等.基于电网多元信息知识图谱的故障处置研究及应用[J].电力信息与通信技术,2021,19(11):30-38. LI Jinxing,LI Xiang,GAO Tianlu,et al.Research and application of fault handling based on power grid multivariate information knowledge graph[J].Electric Power Information and Communication Technology,2021,19(11):30-38.
    [23] 李燕垒.基于知识图谱的电力检修方案智能编制方法[J].电工技术,2023(20):159-163. LI Yanlei.Knowledge graph-based intelligent programming method of electric power maintenance scheme[J].Electric Engineering,2023(20):159-163.
    [24] 王骏东,杨军,裴洋舟,等.基于知识图谱的配电网故障辅助决策研究[J].电网技术,2021,45(6):2101-2112. WANG Jundong,YANG Jun,PEI Yangzhou,et al.Distribution network fault assistant decision-making based on knowledge graph[J].Power System Technology,2021,45(6):2101-2112.
    [25] 聂勇.基于知识图谱的输电规程知识查询系统设计[D].南昌:南昌大学,2021. NEI Yong.Design of knowledge query system for transmission regulations based on knowledge graph[D].Nanchang:Nanchang Univerisity,2021.
    [26] ZHENG S,DONG P,DU J,et al.Construction and applications of knowledge graph of relay protection device defects based on neo4j and structured data[C]// IEEE International Conference on Advanced Power System Automation and Protection,Xuchang,China,2023.
    [27] 陈宗源,余涛,丁茂生,等.基于时空卷积动态知识图谱的新能源消纳评估方法[J].电力系统自动化,2023,47(8):46-54. CHEN Zongyuan,YU Tao,DING Maosheng,et al.Renewable energy accommodation assessment method based on spatio-temporal convolution dynamic knowledge graph[J].Automation of Electric Power Systems,2023,47(8):46-54
    [28] 胡杰,许刚,齐立忠,等.基于知识图谱的输变电工程辅助评审系统架构及关键技术分析[J].电力建设,2023,44(11):104-112. HU Jie,XU Gang,QI Lizhong,et al.Architecture and key technology analysis of power transmission and transformation engineering auxiliary recheck system based on knowledge graph[J].Electric Power Construction,2023,44(11):104-112.
    [29] 张虹,景欣,阮梦宇,等.基于知识图谱的交直流大电网断面越限处置策略快速生成方法[J].现代电力,2021,38(4):455-464. ZHANG Hong,JING Xin,RUAN Mengyu,et al.A method of fast eliminating transmission section overload based on knowledge graph in large-scale AC-DC power grids[J].Modern Electric Power,2021,38(4):455-464.
    [30] 吴琼,李鸣,高方玉,等.配电变压器数字孪生体构建技术研究[J].供用电,2024,41(1):42-49. WU Qiong,LI Ming,GAO Fangyu,et al.Research on digital twin construction technology of distribution transformer[J].Distribution & Utilization,2024,41(1):42-49.
    [31] YAN C,ZHAO F,ZHANG Y.From concept to instance: hierarchical reinforced knowledge graph reasoning[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2024,8(5):3665-3677.
    [32] UGAI T,EGAMI S,FUKUDA K.Event prediction in event-centric knowledge graphs using BERT[C]// IEEE 18th International Conference on Semantic Computing,Laguna Hills,CA,USA,2024.
    [33] 赵凯琳,靳小龙,王元卓.小样本学习研究综述[J].软件学报,2021,32(2):349-369. ZHAO Kailin,JIN Xiaolong,WANG Yuanzhuo.Survey on few-shot learning[J].Journal of Software,2021,32(2):349-369.
    相似文献
    引证文献
引用本文

徐 涛,邹泽华,胡仁焱,等.基于BiGRU+CRF深度学习模型的水电站调度运行知识图谱构建方法[J].电力科学与技术学报,2025,40(1):180-189.
XU Tao, ZOU Zehua, HU Renyan, et al. A construction method of dispatching operation knowledge graph of hydro power stations based on BiGRU + CRF deep learning model[J]. Journal of Electric Power Science and Technology,2025,40(1):180-189.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-18
文章二维码