利用云储能租赁服务的风电场储能容量优化配置
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

湖南省自然科学基金(2019JJ40302)


Optimized configuration of energy storage capacity of wind farms using cloud energy storage leasing services
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云储能聚合了大量分布式储能与集中式储能的控制信息,风电场通过租赁云储能和自建实体储能可实现出力功率可控。为延长自建储能设备使用寿命,设计了功率分配策略。以自建储能设备全寿命周期成本、云储能租赁费用、弃风惩罚成本、缺电惩罚成本最小为目标函数,建立风电场自建储能与租赁云储能容量最优配置模型。仿真分析表明,不同的云储能租赁单价,将影响云储能利用和充放电结果,从而影响自建储能的最优配置容量。云储能租赁和自建实体储能的合理配置,具有良好有效的经济性和实用性。

    Abstract:

    Cloud energy storage can aggregate a large amount of distributed energy storage and centralized energy storage control information. The wind farm can realize the controllability of the output power by renting cloud energy storage and selfbuilt physical energy storage. In order to extend the service life of selfbuilt energy storage equipment, a power allocation strategy is designed. Based on the life cycle cost of selfbuilt energy storage equipment, cloud energy storage energy lease cost, abandoned wind penalty cost, and minimum power shortage penalty cost, the optimal configuration model of the selfbuilt energy storage and the leased cloud energy storage capacity is established for a wind farm. Simulation analysis shows that the energy rental unit prices of different cloud energy storage will affect the cloud energy storage energy utilization, charge and discharge results, thus affecting the optimal configuration capacity of selfbuiltenergy storage. The reasonable allocation of cloud energy storage energy lease and selfbuilt physical energy storage has good economy and practicality.

    参考文献
    相似文献
    引证文献
引用本文

唐夏菲,吴献祥,任青青,等.利用云储能租赁服务的风电场储能容量优化配置[J].电力科学与技术学报,2020,35(1):90-95.
TANG Xiafei, WU Xianxiang, REN Qingqing, et al. Optimized configuration of energy storage capacity of wind farms using cloud energy storage leasing services[J]. Journal of Electric Power Science and Technology,2020,35(1):90-95.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-20
  • 出版日期:
文章二维码