基于模型预测控制的VSC-HVDC自适应控制策略
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM863

基金项目:

国家电网公司科技项目(5220001600V6)


Investigation of a VSC-HVDC adaptive control strategy based on the model prediction strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    VSC-HVDC系统具有良好的自换相能力,可直接向无源网络和弱交流网络供电。提出一种基于有限控制集模型预测控制的VSC-HVDC系统逆变侧自适应控制策略,克服传统的双闭环控制存在的PI参数整定困难、动态响应能力差等问题,同时实现多控制目标及约束的逆变站自适应性控制。首先,推导VSC-HVDC系统在dq0坐标系下的离散数学模型,并据此给出逆变侧定交流电压控制的预测模型以及相应的多目标优化性能函数。接着,通过引入增量算子和反馈校正环节设计出改进后的多步模型预测控制策略,从而提高预测模型的参数鲁棒性。最后,通过对VSC-HVDC供电系统进行不同运行工况下的仿真对比分析,论证所提控制策略的可行性和有效性。

    Abstract:

    The VSC-HVDC system has a nice selfcommutated ability and can supply power to the passive network and weak AC network directly. In this paper, an adaptive control strategy is proposed for the inverter side of a VSC-HVDC system to overcome the problems of PI parameter tuning difficulties and the poor dynamic response of traditional double closedloop control. Firstly, the mathematical model of the VSC-HVDC system in the dq0 coordinate system is deduced with a discrete format. The prediction model of AC voltage control on the inverter side and the corresponding multiobjective optimization performance function are given. Then, the improved multistep strategy of model predictive control is designed by introducing the an incremental operator and the feedback correction link, which improves the parameter robustness of the prediction model. Finally, the VSC-HVDC power supplying system under different operating conditions is simulated to demonstrate the reliability and efficiency of the proposed control strategy.

    参考文献
    相似文献
    引证文献
引用本文

吕文杰,储佳伟,吴 健,等.基于模型预测控制的VSC-HVDC自适应控制策略[J].电力科学与技术学报,2020,35(1):122-129.
LV Wenjie, CHU Jiawei, WU Jian, et al. Investigation of a VSC-HVDC adaptive control strategy based on the model prediction strategy[J]. Journal of Electric Power Science and Technology,2020,35(1):122-129.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-20
  • 出版日期:
文章二维码