基于改进粒子群算法考虑阀点效应的经济负荷最优分配
CSTR:
作者:
通讯作者:

潘晨(1992),男,硕士研究生,主要从事电力系统调度自动化及计算机信息处理研究;Email:2425798862@qq.com

中图分类号:

TM731


Optimal distribution of economic loads based on the improved particle swarm optimization considering valvepoint effects
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    经济分配对于电力系统节能至关重要,是电网中一类典型的优化问题,基于传统的粒子群算法的优化方法由于仅考虑速度与位置参数,易导致局部最优。针对电力系统的有功经济分配,考虑发电机组的阀点效应,提出一种改进型粒子群算法。通过引进视角参数,使粒子的移动状态受到视角的制约,改善传统算法粒子容易早熟而陷入局部最优的缺陷,降低搜索随机性并提高优化精度。仿真结论表明,带有视角参数的改进粒子群算法有更高效的全局搜索能力和更可靠的最优解,为发电机有功经济分配问题提供一种有效的新算法。

    Abstract:

    Economic distribution (ED) is a typical optimization problem of power grid and it is also very important for power system energy saving. However, the optimization method based on the traditional particle swarm algorithm only considers speed and position parameters, which easily leads to local optimization. Under this background, taking into account the valvepoint effect of generators, an improved particle swarm algorithm is proposed for the active power distribution of power systems. The perspective parameter is introduced, and then the moving state of particle is decided by the new highdimensional parameters. The proposed algorithm can avoid the local optimal, reduce the search randomness and improve the optimization accuracy. Simulation results shows that the improved particle swarm algorithm with viewing angle parameters has a more efficient global search capability and a more reliable optimal solution, which provides an effective new algorithm for the power system economic distribution problem.

    参考文献
    [1] 刘静,罗先觉.采用多目标随机黑洞粒子群优化算法的环境经济发电调度[J].中国电机工程学报,2010,30(34):105111.LIU Jing,LUO Xianjue.Environmental economic dispatching adopting multiobjective random blackhole particle swarm optimization algorithm[J].Proceedings of CSEE,2010,30(34):105111.
    [2] 沈茂亚,丁晓群,王宽,等.自适应免疫粒子群算法在动态无功优化中应用[J].电力自动化设备,2007,27(1):3135.SHEN Maoya,DING Xiaoqun,WANG Kuan,et al.Application of adaptive immune PSO in dynamic reactive power optimization[J].Electric Power Automation Equipment,2007,27(1):3135.
    [3] 张雪雯,李艳君.基于自调节粒子群算法的电力系统经济负荷分配[J].电网技术,2006,30(18):813.ZHANG Xuewen,LI Yanjun.Selfadjusted particle swarm optimization algorithm based economic load dispatch of power system[J].Power System Technology,2006,30(18):813.
    [4] 李勇,王建君,曹丽华.基于繁殖粒子群算法的火电厂负荷优化分配[J].电力自动化设备,2012,32(4):8083+87.LI Yong,WANG Jianjun,CAO Lihua.Optimal load dispatching based on breeding particle swarm optimization algorithm for thermoelectric power plant[J].Electric Power Automation Equipment,2012,32(4):8083+87.
    [5] 徐晨博,薛友,林紫菡,等.计及可转移负荷的电气综合能源系统多目标优化[J].电力科学与技术学报,2019,34(3):1323.XU Chenbo,XUE You,LIN Zihan,et al.Multiobjective optimization of an integrated electricitygas energy system considering transferable loads[J].Journal of Electric Power Science and Technology,2019,34(3):1323.
    [6] 邓剑波,马瑞,胡振文,等.基于改进粒子群算法的冷热电联供微网优化调度[J].电力科学与技术学报,2018,33(2):3542.DENG Jianbo,MA Rui,HU Zhenwen,et al.Optimal scheduling of microgrid with CCHP systems based on improved particle swarm optimization algorithm[J].Journal of Electric Power Science and Technology,2018,33(2):3542.
    [7] 曾令全,罗富宝,丁金嫚.禁忌搜索粒子群算法在无功优化中的应用[J].电网技术,2011,35(7):129134.ZENG Lingquan,LUO Fubao,DING Jinman.Application of particle swarm optimization algorithm integrated with tabu search in reactive power optimization[J].Power System Technology,2011,35(7):129134.
    [8] 袁晓冬,费骏韬,胡波,等.资源聚合商模式下的分布式电源、储能与柔性负荷联合调度模型[J].电力系统保护与控制,2019,47(22):1726.YUAN Xiaodong,FEI Juntao,HU Bo,et al.Joint scheduling model of distributed generation,energy storage and flexible load under resource aggregator mode[J].Power System Protection and Control,2019,47(22):1726.
    [9] 杨凯淇,许丹,谢华宝,等.计及燃气蒸汽联合循环机组的热电联合调度模型[J].电力系统保护与控制,2019,47(8):137144.YANG Kaiqi,XU Dan,XIE Huabao,et al.Combined heat and power dispatching model based on gassteam combined cycle unit[J].Power System Protection and Control,2019,47(8):137144.
    [10] 江岳文,陈冲,温步瀛.含风电场的电力系统机组组合问题随机模拟粒子群算法[J].电工技术学报,2009,24(6):129137.JIANG Yuewen,CHENG Chong,WEN Buying.Particle swarm research of stochastic simulation unit for commitment in wind farms Integrated Power System[J].Transactions of China Electrotechnical Society,2009,24(6):129137.
    [11] Coelho LS,Mariani VC.An efficient cultural selforganizing migrating strategy for economicdispatch optimization with valve effect[J].Energy Conversion and Management,2010,51(12):25802587.
    [12] 赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):39.ZHAO Bo,CAO Yijia.A multiagent particle swarm optimization algorithm for reactive power optimization[J].Proceedings of the CSEE,2005,25(5):39.
    [13] Park J B,Lee K S,Shin JR,et al.A particle swarm optimization for economic dispatch withnonsmooth cost functions[J].IEEE Transactions on Power Systems.2005,20(1):3142.[14]康慨,张哲原,钟泰军,等.远洋海岛群微网经济性电源规划方案研究[J].智慧电力.2019,47(6):2633.
    KANG Kai,ZHANG Zheyuan,ZHONG Taijun,et al.Microgrid economic power planning scheme for pelagic island group[J].Smart Power,2019,47(6):2633.
    [15]周玮, 彭昱, 孙辉, 等. 含风电场的电力系统动态经济调度[J]. 中国电机工程学报, 2009, 29(25): 1318.
    ZHOU Wei, PENG Yu, SUN Hui, et al. Dynamic economic dispatch in wind power integrated system[J]. Proceedins of the CSEE, 2009, 29(25): 1318.
    [16]唐巍, 李殿璞.电力系统经济负荷分配的混沌优化方法[J]. 中国电机工程学报, 2000, 20(10): 3741.
    TANG Wei, LI Dianpu.Chaotic optimization for economic dispatch of power systems[J].Proceedings of the CSEE, 2000, 20(10): 3741.
    [17]姚尧, 姚建刚, 吴政球, 等. 电力市场上网电价与火电系统经济负荷分配的算法研究[J]. 电力自动化设备, 2002, 22(2): 3033.
    YAO Yao, YAO Jiangang, WU Zhengqiu, et al. Algorithm study on economic dispatch in electricity market[J]. Electric Automation Equipment, 2002, 22(2): 3033.
    [18]Sinha N,Chakrabarti R,Chattopadhyay P K. Evolutionary programming techniques for economicload diapatch[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(1): 8394.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘 晨,滕 欢,梁梦可,等.基于改进粒子群算法考虑阀点效应的经济负荷最优分配[J].电力科学与技术学报,2020,35(1):151-156.
PAN Chen, TENG Huan, LIANG Mengke, et al. Optimal distribution of economic loads based on the improved particle swarm optimization considering valvepoint effects[J]. Journal of Electric Power Science and Technology,2020,35(1):151-156.

复制
分享
文章指标
  • 点击次数:294
  • 下载次数: 802
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2020-08-20
文章二维码