基于PSNodeRank算法的电力系统关键节点辨识方法
CSTR:
作者:
通讯作者:

孙志媛(1982),女,硕士,高级工程师,主要从事电力系统分析计算工作;Email:77569646@qq.com

中图分类号:

TM863

基金项目:

广西电网有限责任公司科技项目(GXKJXM20152009)


Research on identification method of key nodes of power system based on PSNodeRank algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    电力系统中的某些关键节点在系统发生大规模连锁故障的时候可能会对故障的扩大起着推动的作用。为了提高关键节点辨识的速度和准确性,该文通过对Google公司提出的PageRank算法进行改进,提出基于PSNodeRank算法的电网关键节点辨识方法。该方法选取电网关键节点的重要评价指标,建立电力系统有向加权网络模型。考虑电力系统网络的网络链接方向和权值的特性,该文提出PSNodeRank值对节点进行评估,并具体描述每个节点的重要性,再利用电力系统分区特点,对大电网节点重要性的复杂计算过程进行改进,大大提高了运算速度,减少了运算所需存储容量。最后,通过对IEEE 39节点系统进行仿真,所得结果表明:该文所提方法计算的指标可以有效、准确地辨识出电网中的关键节点,判断它们在交直流电网自组织临界演化过程中的作用。对预防系统向连锁故障临界状态演化有着重要的意义。

    Abstract:

    Some key nodes in the power system may play a role in the expansion of faults when a largescale interlock failure occurs in the system. In order to improve the speed and accuracy of key node identification, this paper proposes a key node identification method based on PSNodeRank algorithm by improving the PageRank algorithm proposed by Google Company. This method selects the important evaluation index of the key nodes of the power grid, and establishes the directional weighted network model of the power system. Considering the network link direction and the characteristic for the weight of power system network, the PSNodeRank value is proposed to assess the importance of each node. And then the power system partitioning characteristics is utilized to improve the complicated calculation process for the importance of large power grid nodes. The speed of operation is greatly improved and the storage capacity required for the operation is also reduced. Finally, an IEEE 39node system is simulated for verification. It is shown that the proposed method can effectively and accurately identify the key nodes in the power grid and judge their roles in the critical evolution of ACDC power network. This method has a great significance to the critical state evolution of the system.

    参考文献
    [1] Bompard E,Napoli R,Xue F.Extended topological approach for the assessment of structural vulnerability in transmission networks[J].IET Generation Transmission & Distribution,2010,4(6):716724.
    [2] 汤涌,卜广全,易俊.印度“7·30”、“7·31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167174.TANG Yong,BU Guangquan,YI Jun.Analysis and lessons of the blackout in Indian Power Grid on July 30 and 31,2012[J].Proceedings of the CSEE,2012,32(25):167174.
    [3] 常康,徐泰山,郁琛,等.自然灾害下电网运行风险控制策略探讨[J].电力系统保护与控制,2019,47(10):7381.CHANG Kang,XU Taishan,YU Chen,et al.Discussion of power system operation risk control strategy in natural disasters[J].Power System Protection and Control,2019,47(10):7381.
    [4] 李更丰,邱爱慈,黄格超,等.电力系统应对极端事件的新挑战与未来研究展望[J].智慧电力,2019,47(8):111.LI Gengfeng,QIU Aici,HUANG Gechao,et al.New challenges and future research prospects in power system against to extreme events[J].Smart Power,2019,47(8):111.
    [5] 朱国威,王先培,贺瑞娟,等.基于重要度评价矩阵的电网关键节点辨识[J].高电压技术,2016,42(10):33473353.ZHU Guowei,WANG Xianpei,HE Ruijuan,et al.Identification of vital node in power grid based on importance evaluation matrix[J].High Voltage Engineering,2016,42(10):33473353.
    [6] 刘明顺,龙志君,赵立进,等.基于模糊推理的电网风险评估及线路重要度辨识[J].电力科学与技术学报,2017,32(7):131138.LIU Mingshun,LONG Zhijun,ZHAO Lijin,et al.Grid risk assessment and line importance identification based on fuzzy reasoning[J].Journal of Electric Power Science and Technology,2017,32(7):131138.
    [7] 刘文颖,梁才,徐鹏,等.基于潮流介数的电力系统关键线路辨识[J].中国电机工程学报,2013,33(31):9098.LIU Wenying,LIANG Cai,XU Peng,et al.Identification of critical line in power systems based on flow betweenness[J].Proceedings of the CSEE,2013,33(31):9098.
    [8] 沈瑞寒,刘涤尘,赵洁,等.基于加权网络模型的电网潮流转移下危险线路识别[J].电网技术,2012,36(5):245250.SHEN Ruihan,LIU Dichen,ZHAO Jie,et al.Weighted network model based recognition of dangerous lines under power flow transferring[J].Power System Technology,2012,36(5):245250.
    [9] 王涛,高成彬,顾雪平,等.基于功率介数的电网关键环节辨识[J].电网技术,2014,38(7):19071913.WANG Tao,GAO Chengbin,GU Xueping,et al.Power betweenness based identification of power grid critical links[J].Power System Technology,2014,38(7):19071913.
    [10] 鞠文云,李银红.基于最大流传输贡献度的电力网关键线路和节点辨识[J].电力系统自动化,2012,36(9):612.JU Wenyun,LI Yinhong.Identification of critical lines and nodes in power grid based on maximum flow transmission contribution degree[J].Automation of Electrical Power System,2012,36(9):612.
    [11] Newman M E J.Model of the small world[J].Journal of Statistical Physics,2000,101:819841.
    [12] Barabasi A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509512.
    [13] 丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估[J].中国电机工程学报,2005,25(Z1):118122.DING Ming,HAN Pingping.Smallworld topological model based vulnerability assessment to largescale power grid[J].Proceedings of the CSEE,2005,25(S1):118122.
    [14] Kitsak M,Gallos L K,Havlin S,et al.Identification of influential spreaders in complex networks[J].Nature Physics,2010,6(11):888893.
    [15] 曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J].电力自动化设备,2006,26(12):15,31.CAO Yijia,CHEN Xiaogang,SUN Ke.Identification of vulnerable lines in power grid based on complex network theory[J].Electric PowerAutomation Equipment,2006,26(12):15,31.
    [16] 张琨,李配配,朱保平,等.基于PageRank的有向加权复杂网络节点重要性评估方法[J].南京航空航天大学学报,2013,45(3):429434.ZHANG Kun,LI Peipei,ZHU Baoping,et al.Evaluation method for node importance in directedweighted complex networks based on PageRank[J].Journal of Nanjing University of Aeronautics & Astronautics,2013,45(3):429434.
    [17] Li Canbing,Liu Wencan,Cao Yijia,et al.Method for evaluating the importance of power grid nodes based on PageRank algorithm[J].IET Generation,Transmission & Distribution,2014,8(11):18431847.
    [18] Langville A N,Meyer C D.Google' s pagerank and beyond:The science of search engine ranking[M].Princeton,NJ,USA:Princeton University Press,2006.
    [19] 刘艳,顾雪平.基于节点重要度评价的骨架网络重构[J].中国电机工程学报,2007,27(10):2027.LIU Yan,GU Xueping.Node importance assessment based skeletonnetwork reconfiguration[J].Proceedings of the CSEE,2007,27(10):2027.
    [20] 傅裕斌,葛梦昕,樊友平,等.基于节点流量重要度的电网关键节点辨识[J].现代电力,2018,35(3):18.FU Yubin,GE Mengxin,FAN Youping,et al.Identification of critical nodes in power grid based on node traffic importance degree[J].Modern Electrial Power,2018,35(3):18.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙志媛,梁水莹,傅裕斌.基于PSNodeRank算法的电力系统关键节点辨识方法[J].电力科学与技术学报,2020,35(2):157-162.
SUN Zhiyuan, LIANG Shuiying, FU Yubin. Research on identification method of key nodes of power system based on PSNodeRank algorithm[J]. Journal of Electric Power Science and Technology,2020,35(2):157-162.

复制
分享
文章指标
  • 点击次数:392
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2020-09-03
文章二维码