基于信息融合的动态神经网络光伏功率预测
CSTR:
作者:
通讯作者:

张旻(1967),男,高级工程师,主要从事电气节能及其控制技术研究;Email:3078951870@qq.com

中图分类号:

TM93

基金项目:

广东省科技专项资金(2017A040405041)


Photovoltaic power forecasting based on information fusion theory
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • | | | |
  • 文章评论
    摘要:

    光伏发电由于受到外界环境的制约,发电波动较大,很难保证高比率的接入,精准预测光伏功率能在提高光伏使用率的同时保障电网的安全运行和调度。在此背景下,提出一种新型光伏功率预测方法,以动态神经网络模型为构架,充分考虑各种制约光伏发电的影响因子,将其进行加权融合成一个综合影响因子λ,并用改进的共轭梯度算法对运算进行优化,针对功率波动较大的时刻,通过缩短预测时间间隔、增加隐含层层数提高预测精度。最后在岳阳临湘县民禹光伏电站进行实际验证。经验证预测方法可行有效,且精度较高。

    Abstract:

    The photovoltaic power generation depends on the uncertain external environment, therefore, the generated power has a relatively high fluctuation resulting a low ratio power access. The accurate forecasting of photovoltaic power can raise up its penetration and also keep a safe operation and dispatching of the power grid.In this paper, a prediction method for photovoltaic power is proposed based on information fusion theory. The dynamic neural network model is adopted. Then, the influence factors, which limit the photovoltaic power generation, are fully considered and a comprehensive influence factor lambda is proposed. After that, the gradient algorithm is utilized for optimization. For the period with high fluctuation, the forecast time interval is shorted and the number of layers is increased to improve the prediction accuracy. Finally, the feasible and effective of the proposed theory is verified at Yueyang photovoltaic power plant in practice.

    参考文献
    [1] 叶林,陈政,赵永宁,等.基于遗传算法模糊径向基神经网络的光伏发电功率预测模型[J].电力系统自动化,2015,39(16):1622.YE Lin,CHEN Zheng,ZHAO Yongning,et al.Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J].Automation of Electric Power Systems,2015,39(16):1622.
    [2] Nordin N,Sulaiman S I,Omar A M.Prediction of AC power output in gridconnectedphotovoltaic system using Artificial Neural Network with multivariable inputs[C]//2016 IEEE Conference on Systems,Process and Control(ICSPC),Bandar Hilir,Malaysia:IEEE,2016.
    [3] 嵇灵,牛东晓,汪鹏.基于相似日聚类和贝叶斯神经网络的光伏发电功率预测研究[J].中国管理科学,2015,23(3):118122.JI Ling,NIU Dongxiao,WANG Peng.Photovoltaic Load Forecasting based on the similar day and bayesian neural network[J].Chinese Journal of Management Science,201523(3):118122.
    [4] 袁晓玲,施俊华,徐杰彦.计及天气类型指数的光伏发电短期出力预测[J].中国电机工程学报,2013,33(34):5764+12.YUAN Xiaoling,SHI Junhua,XU Jieyan.Shortterm power forecasting for photovoltaic generation considering weather type index[J].Proceedings of the CSEE,2013,33(34):5764+12.
    [5] 代倩,段善旭,蔡涛,等.基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J].中国电机工程学报,2011,31(34):2835.DAI Qian,DUAN Shanxu,CAI Tao,et al.Shortterm PV generation system forecasting model without irradiation based on weather type clustering[J].Proceedings of the CSEE,2011,31(34):2835.
    [6] 丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(1):152157.DING Ming,XU Ningzhou.A method to forecast shortterm output power of photovoltaic generation system based on Markov chain[J].Power System Technology,2011,35(1):152157.
    [7] Mandal P,Madhira S T S,Ulhaque A,et al. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques[J].Procedia Computer Science,2012,12:332337.
    [8] 高阳,张碧玲,毛京丽,等. 基于机器学习的自适应光伏超短期出力预测模型[J].电网技术,2015,39(2):307311.GAO Yang,ZHANG Biling,MAO Jingli,et al.Machine learningbased adaptive veryshortterm forecast model for photovoltaic power[J].Power System Technology,2015,39(2):307311.
    [9] 康重庆,夏清,刘梅.电力系统负荷预测[M].北京:中国电力出版社,2007.
    [10] Yona A,Senjyu T,Funabashi T.Application of recurrent neural network to shorttermahead generating power forecasting for photovoltaic system[C]//2007 IEEE Power Engineering Society General Meeting,Tampa,FL,USA:IEEE,2007.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张 旻,李天喆,张容进,等.基于信息融合的动态神经网络光伏功率预测[J].电力科学与技术学报,2020,35(3):68-73.
ZHANG Min, LI Tianzhe, ZHANG Rongjin, et al. Photovoltaic power forecasting based on information fusion theory[J]. Journal of Electric Power Science and Technology,2020,35(3):68-73.

复制
分享
文章指标
  • 点击次数:166
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2020-09-14
文章二维码