基于信息融合的动态神经网络光伏功率预测
作者:
作者单位:

作者简介:

通讯作者:

张旻(1967),男,高级工程师,主要从事电气节能及其控制技术研究;Email:3078951870@qq.com

中图分类号:

TM93

基金项目:

广东省科技专项资金(2017A040405041)


Photovoltaic power forecasting based on information fusion theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏发电由于受到外界环境的制约,发电波动较大,很难保证高比率的接入,精准预测光伏功率能在提高光伏使用率的同时保障电网的安全运行和调度。在此背景下,提出一种新型光伏功率预测方法,以动态神经网络模型为构架,充分考虑各种制约光伏发电的影响因子,将其进行加权融合成一个综合影响因子λ,并用改进的共轭梯度算法对运算进行优化,针对功率波动较大的时刻,通过缩短预测时间间隔、增加隐含层层数提高预测精度。最后在岳阳临湘县民禹光伏电站进行实际验证。经验证预测方法可行有效,且精度较高。

    Abstract:

    The photovoltaic power generation depends on the uncertain external environment, therefore, the generated power has a relatively high fluctuation resulting a low ratio power access. The accurate forecasting of photovoltaic power can raise up its penetration and also keep a safe operation and dispatching of the power grid.In this paper, a prediction method for photovoltaic power is proposed based on information fusion theory. The dynamic neural network model is adopted. Then, the influence factors, which limit the photovoltaic power generation, are fully considered and a comprehensive influence factor lambda is proposed. After that, the gradient algorithm is utilized for optimization. For the period with high fluctuation, the forecast time interval is shorted and the number of layers is increased to improve the prediction accuracy. Finally, the feasible and effective of the proposed theory is verified at Yueyang photovoltaic power plant in practice.

    参考文献
    相似文献
    引证文献
引用本文

张 旻,李天喆,张容进,等.基于信息融合的动态神经网络光伏功率预测[J].电力科学与技术学报,2020,35(3):68-73.
ZHANG Min, LI Tianzhe, ZHANG Rongjin, et al. Photovoltaic power forecasting based on information fusion theory[J]. Journal of Electric Power Science and Technology,2020,35(3):68-73.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-09-14
  • 出版日期:
文章二维码