输电线路绝缘子串偏角的光纤监测研究
CSTR:
作者:
中图分类号:

TM85

基金项目:

国家自然科学基金(51667011)


Research on the optical fiber monitoring for windage angle of transmission line insulator string
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    输电线路绝缘子串风偏之后使得绝缘子串下端带电结构、输电导线距离杆塔较近,当距离小于最小空气间隙时,将造成放电跳闸。绝缘子的风偏严重影响和威胁着电网系统的安全运行,也将造成巨大的经济损失。根据输电线路绝缘子串的风偏原因及结果,设计并研制出一种基于光纤Bragg光栅的倾角传感器,重锤与等强度悬臂梁相连接,等强度悬臂梁中间部位两侧分别粘贴一个光纤Bragg光栅。将研制的倾角传感器进行封装并确保密封完好,并通过抱箍式夹具组合的方式与光纤Bragg光栅称重传感器共同安装于绝缘子串的顶部。对云南电网某110 kV输电线路30#杆塔的绝缘子串进行风偏监测并与风速数据结合进行分析,得到风偏角随风速变化的特点,为输电线路的安全运行提供了参考。

    Abstract:

    The transmission conductor and charged structure at the bottom of insulator string tend to be close to the transmission tower due to the effect of wind deviation. The discharge and tripout may occur once the distance between them is less than the minimum air gap value. Therefore, the wind deviation of insulator string threaten the safe operation of power grid seriously and may lead to an enormous economic loss. Under the circumstance, this paper designs and develops a fiber Bragg grating (FBG) tilt sensor. In this sensor, the gravity hammer is fastened on the free end of equal strength cantilever beam which have one FGB pasted on the central symmetrical lines of both sides. The developed inclination sensor is packaged and then installed on the top of the insulator string together with the fiber Bragg grating load cell by the pattern of hoop clamp combination. The insulator string on 30# Tower of an 110 kV transmission line in the Yunnan Power Grid is monitored by the installed device. By combinatory analyzing the monitoring data and wind data, the variation characteristics of windage angle with wind speed are obtained. The nonelectric measuring of fiber Bragg grating tilt sensor provides a reference for safe operation of power transmission line.

    参考文献
    [1] 赵文元,杨保东.输电线路风偏故障的预防和抑制[J].电力学报,2004,19(1):5961.ZHAO Wenyuan,YANG Baodong.Defending and controling wind lean of transmission line[J].Journal of Electric Power,2004,19(1):5961.
    [2] 黄欢,谭思,曾华荣,等.基于实时应力的输电线路覆冰故障率模型[J].电力科学与技术学报,2017,32(3):145152.HUANG Huan,TAN Si,ZENG Huarong,et al.Icing failure rate model of transmission line based on realtime stress[J].Journal of Electric Power Science and Technology,2017,32(3):145152.
    [3] 韩中合,李秋菊,苑一鸣,等.基于相关向量机的短期风速预测模型[J].电力科学与技术学报,2017,32(3):3842.HAN Zhonghe,LI Qiuju,YUAN Yiming,et al.RVM based shortterm wind speed prediction model.[J].Journal of Electric Power Science and Technology,2017,32(3):3842.
    [4] 胡毅.500 kV输电线路风偏跳闸的分析研究[J].高电压技术,2004,30(8):910.HU Yi.Study on trip caused by windage yaw of 500 kV transmission line[J].High Voltage Engineering,2004,30(8):910.
    [5] 郑佳艳.动态风作用下悬垂绝缘子串风偏计算研究[D].重庆:重庆大学,2006.
    [6] 章易坤,郭永兴,李公法.一种增敏结构的FBG倾角传感器研究[J].光电子·激光,2016,27(3):253258.ZHAG Yikun,GUO Yongxing,LI Gongfa.Research of FBG tilt sensor with enhanced sensitivity structure[J].Journal of Optoelectronics·Laser,2016,27(3):253258.
    [7] Ferdinand P.Optical fiber Bragg grating inclinometry for smart civil engineering and public works[C]//Fourteenth International Conference on Optical Fiber Sensors,Venice,Italy,2000.
    [8] Ni K,Dong X Y,Jin Y X,et al.Temperatureindependent fiber bragg grating tilt sensor[C]//2010 Symposium on Photonics and Optoelectronics,Chengdu,China:IEEE,2010:13.
    [9] 李莉,熊炜,赵艺杰,等.基于模糊遗传算法的输电线路故障混合威布尔分布模型[J].电力科学与技术学报,2018,33(1):6066.LI Li,XIONG Wei,ZHAO Yijie,et al.Mixed weibull distribution model of transmission line fault based on fuzzy genetic algorithm[J].Journal of Electric Power Science and Technology,2018,33(1):6066.
    [10] 黄欢,雷加智,曾华荣,等.极端外部环境下输电线路的综合风险评估方法[J].电力科学与技术学报,2019,34(2):119127.HUANG Huan,LEI Jiazhi,ZENG Huarong,et al.Integrated risk assessment system of transmission line under extreme external environment[J].Journal of Electric Power Science and Technology,2019,34(2):119127.
    [11] 谷凯凯,陈凯,顾然,等.基于FCE和SVM融合的线路典型冰风灾害算法分析[J].中国电力,2020,53(6):5663.GU Kaikai,CHEN Kai,GU Ran,et al.An algorithm for analyzing typical transmission line icing and wind disasters based on integration of fuzzy comprehensive evaluationand support vector machine[J].Electric Power,2020,53(6):5663.
    [12] 孙广,王阳,薛枫,等.特高压直流输电线路改进双端行波故障定位方法研究[J].电力系统保护与控制,2020,48(14):113120.SUN Guang,WANG Yang,XUE Feng,et al.Research on an improved doubleterminal traveling wave fault location method for UHVDC project[J].Power System Protection and Control,2020,48(14):113120.
    [13] 饶超平,肖博文,严星,等.基于Seq2Seq技术的输电线路故障类型识别方法[J].智慧电力,2020,48(5):99105+110.AO Chaoping,XIAO Bowen,YAN Xing,et al.Fault type recognition method of transmission line based on Seq2seq technology[J].Smart Power,2020,48(5):99105+110.
    [14] 刘鸿文.高等材料力学[M].北京:高等教育出版社,1985.
    [15] 杨洪磊,梁仕斌,李川,等.基于FBG的电力杆塔倾角传感器研究[J].传感器与微系统,2013,32(11):2124.YANG Honglei,LIANG Shibin,LI Chuan,et al.Research of electric power tower tilt angle sensor based on FBG[J].Transducer and Microsystem Technologies,2013,32(11):2124.
    [16] 马国明.基于光纤光栅传感器的架空输电线路覆冰在线监测系统的研究[D].北京:华北电力大学,2011.
    [17] 李川.光纤传感器技术[M].北京:科学出版社,2012.
    [18] Ma G M,Jiang J,Mu R D,et al.High sensitive FBG sensor for equivalent salt deposit density measurement[J].IEEE Photonics Technology Letters,2015,27(2):177180.
    [19] 陈西圆.关于传感器非线性的评价[J].传感器与微系统,1993,12(3):1518.CHEN Xiyuan.On evaluation of nonlinearity of sensor[J].Transducer and Microsystem Technologies,1993,12(3):1518.
    [20] 翟国栋.误差理论与数据处理[M].北京:科学出版社,2016.
    [21] 杨洪磊.线路覆冰光纤光栅在线监测系统的研究[M].昆明:昆明理工大学,2014.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈龙,冯婷,梁仕斌,等.输电线路绝缘子串偏角的光纤监测研究[J].电力科学与技术学报,2020,35(5):75-81.
SHEN Long, FENG Ting, LIANG Shibing, et al. Research on the optical fiber monitoring for windage angle of transmission line insulator string[J]. Journal of Electric Power Science and Technology,2020,35(5):75-81.

复制
分享
文章指标
  • 点击次数:157
  • 下载次数: 614
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-04-16
文章二维码