基于相空间重构与原子分解的复杂电压暂降特征参数辨识
CSTR:
作者:
中图分类号:

TM761

基金项目:

国家自然科学基金(51807172)


Voltage sag characteristic parameter identification method based on phase space reconstruction and atomic decomposition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    电压暂降特征参数辨识是评估电压暂降严重性及分析其对设备影响的前提。提出一种相空间重构与原子分解相结合的复杂电压暂降特征参数辨识方法。首先对电压暂降扰动序列进行相空间重构,依据暂降信号的相轨迹特征将扰动波形分割成段,并确定扰动区段的起止时刻;然后构建正弦量原子库,充分利用波形分段结果,按特定方式实现原子参数的有序匹配,获取各段电压暂降波形的特征参数,从而减少原子匹配参数的数量和搜索范围,降低原子分解算法的计算量,保证算法的精度。算例结果表明,该方法能够准确提取电压暂降信号的特征参数,得到描述整个电压暂降过程的参量化解析表示。

    Abstract:

    The identification of characteristic parameters of voltage sag is a prerequisite for evaluating the severity of voltage sag and analyzing its impact on equipment. In this paper, a complex voltage sags parameter identification method is proposed, which combines phase space reconstruction and atomic decomposition. Firstly, it reconstructs the phase space of the voltage sag disturbance sequence, divides the disturbance waveform into segments according to the phase trajectory characteristics of the sag signal, and determines the start and end time of the disturbance section. Then the method builds a sineweight atom library, makes full use of the waveform segmentation results, realizes the orderly matching of atomic parameters in a specific way, and obtains the characteristic parameters of each segment of the voltage sag waveform. Thereby the number of atomic matching parameters and the search range is reduced as well as the computational load of the atomic decomposition algorithm to ensure the accuracy of the algorithm. The results of the calculation example show that the method can accurately extract the characteristic parameters of the voltage sag signal.

    参考文献
    [1] 康军胜,刘桂英,刘思贤,等.基于动态预测和形态学滤波的电压暂降检测研究[J].电力科学与技术学报,2019,34(1):96101.KANG Junsheng,LIU Guiying,LIU Sixian,et al.Research on voltage sags detection based on dynamic prediction and morphological filtering[J].Journal of Electric Power Scince and Technology,2019,34(1):96101.
    [2] 何娟,刘晓波,袁旭峰,等.含微网的配电网电压暂降检测算法仿真[J].智能电力,2019,47(2):1521+74.HE Juan,LIU Xiaobo,YUAN Xufeng,et al.Simulation of voltage sag detection algorithms for distribution network with microgrid[J].Smart Power,2019,47(2):1521+74.
    [3] 冯澎湃,肖楚鹏,郭松,等.考虑含多敏感负荷的配电网电压暂降脆弱区域辨识方法研究[J].电力系统保护与控制,2020,48(11):3644.FENG Pengpai,XIAO Chupeng,GUO Song,et al.Voltage sag vulnerable area identification of a distribution grid with multiple sensitive loads[J].Power System Protection and Control,2020,48(11):3644.
    [4] 裴星宇,焦夏男,杨锐雄,等.变压器电压暂降的传递特性分析[J].电力科学与技术学报,2016,31(1):9095.PEI Xingyu,JIAO Xianan,YANG Ruixiong,et al.Analysis on voltage sag transfer characteristics of transformer[J].Journal of Electric Power Scince and Technology,2016,31(1):9095.
    [5] 卢远宏,郑琼林,马亮.基于三维空间法向量的三相电压幅值检测[J].电工技术学报,2015,30(3):155164.LU Yuanhong,ZHENG Qionglin,MA Liang.Threephase voltage amplitude detection based on 3D space normal vector[J].Transactions of China Electrotechnical Society,2015,30(3):155164.
    [6] 鲁波涌,黄文清.结合小波变换和能量算子的电压暂降检测方法[J].电工技术学报,2011,26(5):171177.LU Boyong,HUANG Wenqing.Hybrid waveletenergy operator method for voltage sag detection[J].Transactions of China Electrotechnical Society,2011,26(5):171177.
    [7] 肖助力,龚任喜,陈双.一种改进不完全S变换的电压暂降检测方法[J].电力系统保护与控制,2015,43(9):6268.XIAO Zhuli,GONG Renxi,CHEN Shuang.Detection of voltage sag by a modified incomlete Stransform[J].Power System Protection and Control,2015,43(9):6268.
    [8] 祁博,邹金慧,范玉刚,等.基于HilbertHuang变换和小波包能量谱的电压暂降源识别[J].中国电力,2013,46(8):112117.QI Bo,ZOU Jinhui,FAN Yugang,et al.Identification of voltage sags sourse based on hilberthuang transform and wavelet packet energy spectrum[J].Electric Power,2013,46(8):112117.
    [9] 赵莹,赵川,叶华,等.应用主成分分析约简电压暂降扰动源识别特征的方法[J].电力系统保护与控制,2015,43(13):105110.ZHAO Ying,ZHAO Chuan,YE Hua,et al.Method to reduce identification feature of different voltage sag disturbance source based on principal component analysis[J].Power System Protection and Control,2015,43(13):105110.
    [10] Lovisolo L,Da Silva E A B,Rodrigues M A M,et al.Efficient coherent adaptive representation of monitored electric signals in power systems using damped sinusoids[J].IEEE Transactions on Signal Processing,2005,53(10):38313846.
    [11] 王宁,李林川,贾清泉,等.应用原子分解的电能质量扰动信号分类方法[J].中国电机工程学报,2011,31(4):5158.WANG Ning,LI Linchuan,JIA Qingquan,et al.Classification of power quality disturbance signals using atomic decomposition method[J].Proceedings of the CESS,2011,31(4):5158.
    [12] 李勋,龚庆武,贾晶晶,等.基于原子稀疏分解的低频振荡模态参数辨识方法[J].电工技术学报,2012,27(9):124133.LI Xun,GONG Qingwu,JIA Jingjing,et al.Atomic sparse decomposition based identification method for lowfrequency oscillation modal parameters[J].Transactions of China Electrotechnical Society,2012,27(9):124133.
    [13] Feng X,Huang H.A fuzzysetbased reconstructed phase space method for identification of temporal patterns time series[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(5):601613.
    [14] 李智勇,吴为麟,林震宇.基于相空间重构和支持向量机的电能扰动分类[J].电力系统自动化,2007,31(5):7075.LI Zhiyong,WU Weilin,LIN Zhenyu.A power disturbance classification method based on phase space reconstruction and support vector machines[J].Automation of Electric Power Systems,2007,31(5):7075.
    [15] 张淑清,贾健,高敏,等.混沌时间序列重构相空间参数选取研究[J].物理学报,2010,59(3):15761582.ZHANG Shuqing,JIA Jian,GAO Min,et al.Study on the parameters determination for reconstructing phasespace in chaos time series[J].Acta Physica Sinica,2010,59(3):15761582.
    [16] Q/GDW 650—2011.电能质量监测终端技术规范[S].
    [17] Mallat S,Zhang Z.Matching pursuits with time frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):33973415.
    相似文献
    引证文献
引用本文

谢小英,牛益国,于惠慧,等.基于相空间重构与原子分解的复杂电压暂降特征参数辨识[J].电力科学与技术学报,2020,35(5):103-110.
XIE Xiaoying, NIU Yiguo, YU Huihui, et al. Voltage sag characteristic parameter identification method based on phase space reconstruction and atomic decomposition[J]. Journal of Electric Power Science and Technology,2020,35(5):103-110.

复制
分享
文章指标
  • 点击次数:133
  • 下载次数: 762
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-04-16
文章二维码