基于混合分布模型的风电功率超短期预测误差分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM93

基金项目:

上海绿色能源并网工程技术研究项目(13DZ2251900)


Ultra shorttime prediction error analysis of wind power based on mixed distribution model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分析风电功率预测误差特性对电力系统优化调度与安全控制等方面具有重要意义。提出混合t Locationscale分布的风电功率超短期预测误差分布模型,通过改进Kmeans聚类算法确定模型参数。并以某风电场的实测数据进行验证分析不同预测方法下风电功率超短期预测误差的分布特性。根据风电场实测数据进行功率预测,对时间序列和支持向量机2种预测模型产生的误差进行分析,验证了该模型可以有效描述预测误差概率分布。

    Abstract:

    Characteristics analysis of wind power prediction error can provide more accurate reference for optimal dispatch and stable operation of power system. This paper proposes the mixed t Locationscale distribution model to describe the probability distribution of wind power prediction error characteristics quantitatively. Then it uses improved Kmeans clustering algorithm to determine the model parameters. The distribution characteristics of the ultrashortterm prediction errors of wind power under different prediction methods are validated and analyzed with the measured data of a wind farm. Based on the measured data of the wind farm, we predict and analyze the errors produced by the two prediction models of time series and support vector machines, respectively. It is verified that the model can effectively describe the probability distribution of prediction errors.

    参考文献
    相似文献
    引证文献
引用本文

张帅可,罗萍萍.基于混合分布模型的风电功率超短期预测误差分析[J].电力科学与技术学报,2020,35(5):111-118.
ZHANG Shuaike, LUO Pingping. Ultra shorttime prediction error analysis of wind power based on mixed distribution model[J]. Journal of Electric Power Science and Technology,2020,35(5):111-118.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-16
  • 出版日期:
文章二维码