基于深度学习的悬式瓷绝缘子红外图像识别方法
作者:
作者单位:

作者简介:

通讯作者:

高嵩(1985),男,硕士,高级工程师,主要从事输电线路和电力外绝缘技术研究;Email:12345678@qq.com

中图分类号:

TM85

基金项目:

国家自然科学基金(51677061);国网江苏电力有限公司科技研究项目(J2018015)


Infrared image recognition method of porcelain discsuspended insulators based on deep learning technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过提取单帧红外图像中盘形悬式瓷绝缘子串铁帽和盘面温度信息,以相对温差作为判据来诊断其劣化状态,是实现绝缘子串状态在线自动监测的有效方法。为准确提取温度信息,提出一种结合绝缘子图像特征与深度学习的算法,针对红外图像中瓷绝缘子串的铁帽和盘面区域进行精确的自动识别。该算法以大量绝缘子不同部件图像作为样本数据集,经过自构建的卷积神经网络训练形成3个分类器;然后利用分类器在校正后的绝缘子串区域图像中进行识别;最后在原红外图像中用不同颜色进行标识。结果表明该算法对不同电压等级、不同伞裙形态的绝缘子串铁帽与盘面区域均能取得优异的识别结果。

    Abstract:

    By extracting the iron cap and disc surface temperature information of the disc suspended porcelain insulator string in the singleframe infrared image, the relative temperature difference is considered as a criterion to diagnose the deterioration state, which is an efficient and accurate method for online automatic monitoring of the insulator string state. In order to accurately extract the temperature information, this paper proposes an algorithm that combines the characteristics of the insulator image and deep learning to accurately identify the iron cap and disc surface area of the porcelain insulator string in the infrared image. The algorithm uses a large number of different parts of insulator images as sample data sets, and is trained by selfconstructed CNN to form three classifiers. Then it uses the classifiers to identify in the corrected insulator string region image and finally utilizes different colors to mark in the original infrared image. It is shown that this algorithm can obtain excellent recognition results of cap and disc area for insulator strings of different voltage levels and different disc types.

    参考文献
    相似文献
    引证文献
引用本文

高嵩,陆倚鹏,王笑倩,等.基于深度学习的悬式瓷绝缘子红外图像识别方法[J].电力科学与技术学报,2020,35(5):119-125.
GAO Song, LU Yipeng, WANG Xiaoqian, et al. Infrared image recognition method of porcelain discsuspended insulators based on deep learning technology[J]. Journal of Electric Power Science and Technology,2020,35(5):119-125.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-16
  • 出版日期:
文章二维码