基于Graph模型的海量用电数据并行聚类分析
CSTR:
作者:
通讯作者:

陶鹏(1979),男,硕士,高级工程师,主要从事电力计量和大数据分析的研究;Email:hbdyytp@163.com

中图分类号:

TM761

基金项目:

国家自然科学基金(51677072)


Parallel clustering analysis for power consumption data based on graph model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • | | | |
  • 文章评论
    摘要:

    随着智能电网建设的不断深入,在配用电环节收集的监测数据越来越多,逐渐构成智能电网用户侧大数据。传统数据分析模式已经无法满足性能需求,迫切需要新的存储和数据分析模式来应对。提出基于阿里云大数据分析平台MaxCompute的海量用电数据聚类分析方法,该方法充分考虑用电数据的特点,设计基于多级分区表的用电数据存储模式,采用三相电压、三相电流、三相功率因数等建立多维数据特征,应用MaxCompute Graph框架设计实现高效的海量用电数据的聚类划分算法。实验结果表明,所设计的存储模式可有效提升用电数据的检索效率;通过对不同用电类型的用户进行聚类划分,聚类准确率达到88%,验证了聚类划分的有效性和高性能。

    Abstract:

    As the deepen development of smart grids construction, more and more monitoring data are collected in power distribution network, and gradually forming big data on the user side of smart grids. The traditional data analysis model does no longer meet performance requirements of huge data processing. Thereby new storage and data analysis models are urgently needed to be established. Under this background, this paper proposes a cluster analysis method for massive electricity consumption data based on the Alibaba Cloud big data analysis platform MaxCompute. The characteristics of power consumption data are fully considered, and a multilevel partition tablebased power consumption data storage mode are designed by adopting the threephase voltage, threephase current, threephase power factor, etc. to establish multidimensional data characteristics. Furthermore, the MaxCompute Graph framework design is employed to achieve an efficient clustering and partitioning algorithm for massive electricity consumption data. Experimental results show that the designed storage mode can effectively improve the retrieval efficiency of electricity consumption data. The clustering accuracy rate reaches 88% for clustering of users with different electricity consumption types. The effectiveness and high efficiency of clustering is verified.

    参考文献
    [1] 孙毅,黄婷,崔晓昱,等.互联网视角下的泛在电力物联网[J].电力科学与技术学报,2019,34(4):312.SUN Yi,HUANG Ting,CUI Xiaoyu,et al.Ubiquitous power internet of things from the perspective of internet[J].Journal of Electric Power Science and Technology,2019,34(4):312.
    [2] 何永秀,王冰,熊威,等.基于模糊综合评价的居民智能用电行为分析与互动机制设计[J].电网技术,2012,36(10):247252.HE Yongxiu,WANG Bing,XIONG Wei,et al.Analysis of residents’ smart electricity consumption behavior based on fuzzy synthetic evaluation and the design of interactive mechanism[J].Power System Technology,2012,36(10):247252.
    [3] 陈鹏伟,陶顺,肖湘宁,等.短时间尺度用电行为相关性分析网络模型[J].电力系统自动化,2017,41(3):6169.CHEN Pengwei,TAO Shun,XIAO Xiangning,et al.Network model for correlation analysis of shortterm electricity consumption behavior[J].Automation of Electric Power System,2017,41(3):6169.
    [4] 陆俊,朱炎平,彭文昊,等.计及用电行为聚类的智能小区互动化需求响应方法[J].电力系统自动化,2017,41(17):113120.LU Jun,ZHU Yanping,PENG Wenhao,et al.Interactive demand response method of smart community considering clustering of electricity consumption behavior[J].Automation of Electric Power System,2017,41(17):113120.
    [5] 徐杰彦,许雯旸,褚渊,等.区域尺度住宅建筑日用电负荷模型构建方法研究[J].中国电力,2020,53(8):2939.XU Jieyan,XU Wenyang,CHU Yuan,et al.Residential electricity load model construction in district scale[J].Electric Power,2020,53(8):2939.
    [6] 王毅,张宁,康重庆,等.电力用户行为模型:基本概念与研究框架[J].电工技术学报,2019,34(10):20562068.WANG Yi,ZHANG Ning,KANG Chongqing,et al.Electrical consumer behavior model:Basic concept and research framework[J].Transactions of China Electrotechnical Society,2019,34(10):20562068.
    [7] 宋亚奇,周国亮,朱永利,等.云平台下并行总体经验模态分解局部放电信号去噪方法[J].电工技术学报,2015,30(18):213222.SONG Yaqi,ZHOU Guoliang,ZHU Yongli,et al.Research on parallel ensemble empirical mode decomposition denoising method for partial discharge signals based on cloud platform[J].Transactions of China Electrotechnical Society,2015,30(18):213222.
    [8] 张素香,刘建明,赵丙镇,等.基于云计算的居民用电行为分析模型研究[J].电网技术,2013,37(6):15421546.ZHANG Suxiang,LIU Jianming,ZHAO Bingzhen,et al.Cloud computingbased analysis on residential electricity consumption behavior[J].Power System Technology,2013,37(6):15421546.
    [9] 葛磊蛟,王守相,王尧,等.多源异构的智能配用电数据存储处理技术[J].电工技术学报,2015,30(Z2):159168.GE Leijiao,WANG Shouxiang,WANG Yao,et al.Storage and processing technology of the multisource isomerized data for smart power distribution and utilization[J].Transactions of China Electrotechnical Society,2015,30(S2):159168.
    [10] Bryant R E.Graphbased algorithms for boolean function manipulation[J].IEEE Transations Commit,2006,C35(8):677691.
    [11] Mitliagkas I,Borokhovich M,Dimakis A G,et al.FrogWild!Fast pagerank approximations on graph engines[J].Computer Science,2015,8(8):874885.
    [12] Asma K,Abdulsahib.Anomaly detection in text data that represented as a graph using DBSCAN algorithm[J].Journal of Theoretical & Applied Information Technology,2017,95(9):20962101.
    [13] 朱永利,李莉,宋亚奇,等.ODPS平台下的电力设备监测大数据存储与并行处理方法[J].电工技术学报,2017,32(9):199210.ZHU Yongli,LI Li,SONG Yaqi,et al.Storage and parallel processing of big data of power equipment condition monitoring on ODPS platform[J].Transactions of China Electrotechnical Society,2017,32(9):199210.
    [14] 刘晓悦,郭强.海量用电数据并行聚类分析[J].辽宁工程技术大学学报:自然科学版,2016,35(1):7680.LIU Xiaoyue,GUO Qiang.Cloud computing based cluster analysis on data of power utilization[J].Journal of Liaoning Technical University:Natural Science,2016,35(1):7680.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶鹏,张洋瑞,李梦宇,等.基于Graph模型的海量用电数据并行聚类分析[J].电力科学与技术学报,2020,35(6):144-151.
TAO Peng, ZHANG Yangrui, LI Mengyu, et al. Parallel clustering analysis for power consumption data based on graph model[J]. Journal of Electric Power Science and Technology,2020,35(6):144-151.

复制
分享
文章指标
  • 点击次数:140
  • 下载次数: 619
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-04-16
文章二维码