基于Graph模型的海量用电数据并行聚类分析
作者:
作者单位:

作者简介:

通讯作者:

陶鹏(1979),男,硕士,高级工程师,主要从事电力计量和大数据分析的研究;Email:hbdyytp@163.com

中图分类号:

TM761

基金项目:

国家自然科学基金(51677072)


Parallel clustering analysis for power consumption data based on graph model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着智能电网建设的不断深入,在配用电环节收集的监测数据越来越多,逐渐构成智能电网用户侧大数据。传统数据分析模式已经无法满足性能需求,迫切需要新的存储和数据分析模式来应对。提出基于阿里云大数据分析平台MaxCompute的海量用电数据聚类分析方法,该方法充分考虑用电数据的特点,设计基于多级分区表的用电数据存储模式,采用三相电压、三相电流、三相功率因数等建立多维数据特征,应用MaxCompute Graph框架设计实现高效的海量用电数据的聚类划分算法。实验结果表明,所设计的存储模式可有效提升用电数据的检索效率;通过对不同用电类型的用户进行聚类划分,聚类准确率达到88%,验证了聚类划分的有效性和高性能。

    Abstract:

    As the deepen development of smart grids construction, more and more monitoring data are collected in power distribution network, and gradually forming big data on the user side of smart grids. The traditional data analysis model does no longer meet performance requirements of huge data processing. Thereby new storage and data analysis models are urgently needed to be established. Under this background, this paper proposes a cluster analysis method for massive electricity consumption data based on the Alibaba Cloud big data analysis platform MaxCompute. The characteristics of power consumption data are fully considered, and a multilevel partition tablebased power consumption data storage mode are designed by adopting the threephase voltage, threephase current, threephase power factor, etc. to establish multidimensional data characteristics. Furthermore, the MaxCompute Graph framework design is employed to achieve an efficient clustering and partitioning algorithm for massive electricity consumption data. Experimental results show that the designed storage mode can effectively improve the retrieval efficiency of electricity consumption data. The clustering accuracy rate reaches 88% for clustering of users with different electricity consumption types. The effectiveness and high efficiency of clustering is verified.

    参考文献
    相似文献
    引证文献
引用本文

陶鹏,张洋瑞,李梦宇,等.基于Graph模型的海量用电数据并行聚类分析[J].电力科学与技术学报,2020,35(6):144-151.
TAO Peng, ZHANG Yangrui, LI Mengyu, et al. Parallel clustering analysis for power consumption data based on graph model[J]. Journal of Electric Power Science and Technology,2020,35(6):144-151.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-16
  • 出版日期:
文章二维码