NCEP与STRM在风电场选址中的应用
CSTR:
作者:
中图分类号:

TM614

基金项目:

湖南省自然科学基金(2018JJ4025);湖南省电动交通与智能配网工程技术研究中心开放基金(KFJJ20190105)


Research on the application of NCEP and STRM for the selection of wind farm site
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • | | | |
  • 文章评论
    摘要:

    针对目前某些风能资源评估系统精度较低的问题,提出根据NCEP数据提取风电场气象数据、利用STRM数据得出风电场地形的方法,并利用WAsP软件计算出风速、风功率密度等风能资源关键指标;在获知风能资源分布指标的情况后,求取两参数的威布尔分布,对风速的频率分布进行模拟并估计发电量。最后,通过实例验证所提方法可行、有效且预测精度较高。该方法为风电场的建设提供理论依据,也为后期的风电场精准定位提供指导。

    Abstract:

    In order to solve the problem of low accuracy in wind energy resource assessment, this paper uses NCEP data to extract meteorological data of wind farms, and uses STRM data to obtain macroscopic topography of wind farms. With the support of WAsP software, the key indicators of wind energy resources such as wind speed and wind power density are then calculated. After knowing these indicators of the distribution of wind energy resources, the Weibull distribution of the two parameters are obtained. Then the frequency distribution of wind speed are simulated and the power generation are estimated. The proposed method provides a theoretical basis for the construction of wind farms and guidance for the precise positioning of the wind farms in the later period. Finally, an example is included to verify that the proposed method is feasible, effective and has high prediction accuracy.

    参考文献
    [1] 陶玉波,陈昊,秦晓辉,等.短期风电功率预测概念和模型与方法[J].电力工程技术,2018,37(5):713.TAO Yubo,CHEN Hao,QIN Xiaohui,et al.A review of the shortterm wind power forecasting theory,model and approach[J].Electric Power Engineering Technology,2018,37(5):713.
    [2] 樊国旗,蔺红,程林,等.基于K均值模式划分改进模糊聚类与BP神经网络的风力发电预测研究[J].智慧电力,2019,47(5):3842+83.FAN Guoqi,LIN Hong,CHENG Lin,et al.Wind power prediction based on kmeans pattern classification improved fuzzy clustering and BP neural network[J].Smart Power,2019,47(5):3842+83.
    [3] 李建锋,韩琴,刘战礼.基于风电机组分群的风电可靠性评价方法研究[J].中国电力,2018,51(6):136143.LI Jianfeng,HAN Qin,LIU Zhanli.Wind power reliability evaluation method based on wind power unit grouping[J].Electric Power,2018,51(6):136143.
    [4] 李剑楠,乔颖,鲁宗相,等.时空尺度风电统计特性评价指标体系及其应用[J].中国电机工程学报,2013,33(13):5361.LI Jiannan,QIAO Ying,LU Zongxiang,et al.An evaluation index system for wind power statistical characteristics in multiple spatial and temporal scales and its application[J].Proceedings of the CSEE,2013,33(13):5361.
    [5] 叶林,陈小雨,靳晶新,等.考虑风功率密度和风向特征的风能资源MCP评估方法[J].电力系统自动化,2019,43(3):2434.YE Lin,CHEN Xiaoyu,JIN Jingxin,et al.Measurecorrelatepredict assessment method of eind energy resource considering wind powere density and wind direction[J].Automatic of Electric Power Systems,2019,43(3):2434.
    [6] 陆艳艳,刘树洁,王涛.海上风能资源测量及评估中几个关键问题分析[J].全球能源互联网,2019,2(2):170178.LU Yanyan,LIU Shujie,WANG Tao.Analysis of several key issues in measurement and assessment of offshore wind energy resources[J].Journal of Global Energy Interconnection,2019,2(2):170178.
    [7] Javier Sanz Rodrigo,Roberto Aurelio Chávez Arroyo,Patrick Moriarty,et al.Mesoscale to microscale wind farm flow modeling and evaluation[J].Wiley Interdisciplinary Reviews:Energy and Environment,2016,6(2):e214e225.
    [8] 王晨,寇鹏.基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J].电工技术学报,2020,35(13):27232735.WANG Chen,KOU Peng.Wind speed forecasts of multiple wind turbines in a wind farm based on integration model built by convolutional neural network and simple recurrent unit[J].Transactions of China Electrotechnical Society,2020,35(13):27232735.
    [9] 郑明,李保宏,陆莹,等.海上风电场集群输电网可靠性分析[J].电力工程技术,2018,37(2):4954.ZHENG Ming,LI Baohong,LU Ying,et al.Reliability analysis of offshore wind farm transmission network cluster[J].Electric Power Engineering Technology,2018,37(2):4954.
    [10] 吕雪芹,余志,邓院昌,等.基于特征点修正的SRTM数据在风能资源微观评估中的应用[J].测绘科学,2008,33(4):161162.LV Xueqin,YU Zhi,DENG Yuanchang,et al.Application of SRTM data with elevation revision in wind resource assessment[J].Science of Surveying and Mapping,2008,33(4):161162.
    [11] 韩晓亮,高志鹰.山脉对于风电场影响的计算分析[J].电网与清洁能源,2020,36(8):112115.HAN Xiaoliang,GAO Zhiying.Calculation and analysis of the influence of mountains on wind farms[J].Power System and Clean Energy,2020,36(8):112115.
    [12] 李晓燕,余志.基于MM5的沿海风资源数值模拟方法研究[J].太阳能学报,2005,26(1):400408.LI Xiaoyan,YU Zhi.Wind resource modeling for the coast of China using MM5[J].Acta Energiae Solaris Sinica,2005,26(1):400408.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺煜婷,唐立军,夏向阳. NCEP与STRM在风电场选址中的应用[J].电力科学与技术学报,2020,35(6):152-156.
HE Yuting, TANG Lijun, XIA Xiangyang. Research on the application of NCEP and STRM for the selection of wind farm site[J]. Journal of Electric Power Science and Technology,2020,35(6):152-156.

复制
分享
文章指标
  • 点击次数:122
  • 下载次数: 607
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-04-16
文章二维码