加权模糊C均值聚类和主客观赋权结合的厂用电关联特征挖掘方法
作者:
作者单位:

作者简介:

通讯作者:

秦佳倩(1995),女,硕士研究生,主要从事电力系统分析与控制;Email:jiaqianqin0621@163.com

中图分类号:

TM621.7

基金项目:

国家自然科学基金(51277015);国网湖南省电力有限公司科技项目(5216A5180014)


Auxiliary power consumption feature mining method weighted fuzzy Cmeans clustering and subjective and objective weighting combined
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    厂用电是反应火电机组经济性与能效性的重要指标,该文提出一种加权模糊C均值聚类和主客观赋权法结合的厂用电关联特征挖掘方法。首先,针对火电机组辅机设备的历史运行数据,利用因子分析法获取运行指标之间的强弱相关性及对厂用电目标值的影响力,提取影响机组能耗的重要指标,进而对提取出的运行指标进行对应权重的赋值,再进行加权模糊C均值聚类;其次,为克服单一赋权法的缺点,进一步利用层次分析法与熵权法相结合来修正机组能耗评估中各项指标的权重值;最后,通过对某火电厂600 MW机组的10个月历史数据、6个典型负荷区间进行文中方法验证,表明文中模型和算法正确有效。

    Abstract:

    Power consumption is an important indicator of the economic and energy efficiency of thermal power units, in this paper, an improved weighted fuzzy Cmeans clustering algorithm is proposed. First of all, according to the historical operation data of auxiliary equipment of thermal power units, the factor analysis method is used to obtain the strong and weak correlation between the operation indicators and the influence on the target value of plant power, and extract the important indicators that affect the energy consumption of the unit, the operating indexes are assigned to the corresponding weights, and the weighted fuzzy Cmeans clustering is performed. Secondly, to overcome the shortcomings of the single weighting method, the combination of the analytic hierarchy process and the entropy weight method is further used to modify the indicators in the unit energy consumption assessment weight value. Finally, a sixpoint load interval of 10 months of historical data of a 600 MW unit in a thermal power plant is verified to that the model and algorithm are correct and effective.

    参考文献
    相似文献
    引证文献
引用本文

秦佳倩,唐海国,张 帝,等.加权模糊C均值聚类和主客观赋权结合的厂用电关联特征挖掘方法[J].电力科学与技术学报,2020,35(4):122-127.
QIN Jiaqian, TANG Haiguo, ZHANG Di, et al. Auxiliary power consumption feature mining method weighted fuzzy Cmeans clustering and subjective and objective weighting combined[J]. Journal of Electric Power Science and Technology,2020,35(4):122-127.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-09-04
  • 出版日期:
文章二维码