基于多模型切换的锅炉主蒸汽温度预测控制
CSTR:
作者:
中图分类号:

TM621;TK23

基金项目:

国家自然科学基金(61304019, 61673401,51674042);湖南省教育厅重点项目(17A005)


Multimodel switching based predictive control for main steam temperature in boiler
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | | | |
  • 文章评论
    摘要:

    火电厂锅炉主蒸汽温度具有大迟延、大惯性、参数时变等特点,当工况发生大的变化时,采用基于单一模型的传统PID控制难以维持满意的控制效果。为此,提出一种基于多模型切换的预测控制方法。首先建立多个典型工况的对象模型;再设计不同模型下的最佳动态矩阵控制器;然后设计切换策略选出最合适的控制器来削弱变工况(特别是负荷变化)对主蒸汽温度系统的影响;最后通过Matlab仿真验证所提方法的有效性。仿真结果比较分析表明,多模型动态矩阵控制方法优于传统PID控制,多模型切换提高了固定参数模型预测控制的鲁棒性。

    Abstract:

    The main steam temperature in the thermal power plant boiler has the characteristics such as large delay, strong inertial, time varying parameters and so on. When the condition changes greatly, it is difficult to maintain satisfactory control results using traditional PID control based on a single model. To solve this problem, this paper presents a predictive control method based on multimodel switching. Firstly, the object models are established under a number of typical conditions. Secondly, the best dynamic matrix controller under different models are designed. Thirdly, the switching strategy is designed to select the most appropriate controller to mitigate the effects of varied operating conditions (especially load changes) on the main steam temperature system. Finally, the validity of the proposed method is verified through Matlab simulation. The simulation results show that the proposed method is superior to the traditional PID control, and the multimodel switching improves the robustness of the fixed parameter model predictive control.

    参考文献
    [1] 张华,沈胜强,郭慧彬.多模型分形切换预测控制在主汽温度调节中的应用[J].电机与控制学报,2014,18(2):108114.ZHANG Hua,SHEN Shengqiang,GUO Huibin.Application of multimodel fractal switching predictive control in main steam temperature[J].Electric Machines and Control,2014,18(2):108114.
    [2] WANG F,LI X,ZHANG Q.Main steam temperature control of ultra supercritical unit based on online identification and IMCPID[C]//IEEE 11th World Congress on Intelligent Control and Automation(WCICA),Shenyang,China,2014.
    [3] ZHANG J,ZHANG F,REN M,et al.Cascade control of superheated steam temperature with neuroPID controller[J].ISA Transactions,2012,51(6):778785.
    [4] 孙宇贞,高将,彭道刚.主汽温的改进型神经网络辨识Smith预估器[J].自动化仪表,2016,37(7):8587.SUN Yuzhen,GAO Jiang,PENG Daogang.Smith predictor improved by BP neural network recognition for main steam temperature control[J].Process Automation Instrumentation,2016,37(7):8587.
    [5] 刘长良,马增辉.过热汽温系统的Smith预估器参数多目标优化控制[J].模式识别与人工智能,2015,28(3):282288.LIU Changliang,MA Zenghui.Multiobjective optimization control of Smithpredictor parameters in superheated steam temperature system[J].PR & AI,2015,28(3):282288.
    [6] 王勇,刘吉臻,刘向杰,等.基于折息递推最小二乘自适应动态矩阵的过热汽温控制器设计[J].中国电机工程学报,2007,27(8):7075.WANG Yong,LIU Jizhen,LIU Xiangjie,et al.Design of superheat steam temperature controller based on discount recursive least square adaptive DMC[J].Proceeding of the CSEE,2007,27(8):7075.
    [7] Draganescu M,Guo S,Wojcik J,et al.Generalized predictive control for superheated steam temperature regulation in a supercritical coalfired power plant[J].CSEE Journal of Power and Energy Systems,2015,1(1):6977.
    [8] 王松鹤,丁维明,王伟.过热汽温的非线性广义预测控制与优化[J].动力工程学报,2015,35(9):733739.WANG Songhe,DING Weiming,WANG Wei.Nonlinear general predictive control and optimization of superheat steam temperatures[J].Journal of Chinese Society of Power Engineering,2015,35(9):733739.
    [9] 康军胜,刘桂英,刘思贤,等.基于动态预测和形态学滤波的电压暂降检测研究[J].电力科学与技术学报,2019,34(1):96101.KANG Junsheng,LIU Guiying,LIU Sixian,et al.Research on voltage sags detection based on dynamic prediction and morphological filtering[J].Journal of Electric Power Science and Technology,2019,34(1):96101.
    [10] 刘庆时,赵贺,刘迪,等.基于支持向量机的家庭负荷控制策略研究[J].电力科学与技术学报,2016,31(4):96101.LIU Qingshi,ZHAO He,LIU Di,et al.Research on family load control strategy based on support vector machine[J].Journal of Electric Power Science and Technology,2016,31(4):96101.
    [11] 蔡利军,朱豫才,吕霞,等.模型预测控制在超超临界机组AGC协调控制和主汽温控制中的应用[J].中国电力,2018,51(7):6877.CAI Lijun,ZHU Yucai,LV Xia,et al.MPC applications in AGC CCS and steam temperature control on two ultrasupercritical coalfired power generation units[J].Electric Power,2018,51(7):6877.
    [12] 王振雷,陈登乾,王昕.基于多模型切换策略的精馏塔最优控制[J].清华大学学报:自然科学版,2016,56(4):430436.WANG Zhenlei,CHEN Dengqian,WANG Xin.Optimal control of distillation columns based on a multiple model switching strategy[J].Journal of Tsinghua University:Science and Technology,2016,56(4):430436.
    [13] 席裕庚.预测控制[M].北京:国防工业出版社,2013.
    [14] HOU G,ZHANG J,LIU J,et al.Multiplemodel predictive control based on fuzzy adaptive weights and its application to mainsteam temperature in power plant[C]//The 5th IEEE Conference on Industrial Electronics and Applications(ICIEA),Taichung,China,2010.
    [15] 范永胜,徐治皋.基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997,17(1):2328.FAN Yongsheng,XU Zhigao.Study on adaptive fuzzy control system of boiler superheated steam temperature based on dynamic characteristic mechanism analysis[J].Proceeding of the CSEE,1997,17(1):2328.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周 超,谢七月,左 毅,等.基于多模型切换的锅炉主蒸汽温度预测控制[J].电力科学与技术学报,2020,35(4):154-160.
ZHOU Chao, XIE Qiyue, ZUO Yi, et al. Multimodel switching based predictive control for main steam temperature in boiler[J]. Journal of Electric Power Science and Technology,2020,35(4):154-160.

复制
分享
文章指标
  • 点击次数:393
  • 下载次数: 1025
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2020-09-04
文章二维码